Advertisement

Community Ecology

, Volume 9, Supplement 1, pp 43–48 | Cite as

Interannual variability of grasslands’ carbon balance depends on soil type

  • K. PintérEmail author
  • Z. Barcza
  • J. Balogh
  • Sz. Czóbel
  • Zs. Csintalan
  • Z. Tuba
  • Z. Nagy
Article

Abstract

Interannual variation of carbon fluxes of grasslands on sandy (5 years data) and heavy clay soils (4 years data) have been analysed. The sandy grassland was carbon sink in 3 (2004, 2005, 2006) out of the investigated 5 years. Its annual C-balance is precipitation limited, the relation seems strongly conservative, with r2 of 0.83. More than half of the net source activity fell to the summer droughts. The heavy clay grassland was net source of carbon in one year (2007) only with no whole year record from 2003, a drought and heat wave year. Dependence of the C-balance on precipitation was somewhat weaker (r2 =0.57) than in the sandy grassland. Length of growing period showed less variation here compared to the sandy grassland. Recovery of sink activity after rains was much slower for the heavy clay grassland than for the sandy grassland. The reason behind is that the amount of water required to reach optimal soil water content for plant functioning is several times larger for the mountain grassland. This fact and the low conductivity of the clay soil for water decrease the heavy clay grassland’s recovery potential after droughts. Owing to these soil characteristics, the clay grassland may be more vulnerable to droughts in terms of decreased C-assimilation and (soil) carbon losses under the predicted drier summers even if the annual precipitation sum was higher by 10.7% on average for the mountain compared to the sandy grassland. The annual precipitation sum is close to the threshold, below which the grasslands may turn into source of carbon. While in one hand this can be viewed as an example of ecosystem scale adaptation to available water, drought events also involve loss of soil carbon and a potential positive feedback between source activity and decreasing net primary production, on the other.

Keywords

Eddy covariance Effect of drought Grassland NEE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barcza, Z., L. Haszpra, H. Kondo, N. Saigusa, S. Yamamoto and J. Bartholy. 2003. Carbon exchange of grass in Hungary. Tellus Series B-Chemical and Physical Meteorol. 55: 187–196.CrossRefGoogle Scholar
  2. Christensen, J.H., B. Hewitson, A. Busuioc, A. Chen, X. Gao, I. Held, R. Jones, R.K. Kolli, W.-T. Kwon, R. Laprise, V. Magaña Rueda, L. Mearns, C.G. Menéndez, J. Räisänen, A. Rinke, A. Sarr and P. Whetton, 2007: Regional Climate Projections. In: Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  3. Feigenwinter, Ch., Bernhofer, Ch., Eichelman, U., Heinesch, B., Hertel, M., Janous, D., Kolle, O., Lagergren, F., Lindroth, A., Minerbi, S., Moderow, U., Molder, M., Montagnani, L., Oueck, R., Rebmann, C., Vestin, P., Yernaux, M., Zeri, M., Ziegler, W., Aubinet, M. 2008. Comparison of horizontal and vertical advective CO2 fluxes at three forest sites. Agricultural and Forest Meteorol. 148: 12–24.CrossRefGoogle Scholar
  4. Hagyó, A., M. Rajkai and Z. Nagy. 2006. Effect of forest and grassland vegetation on soil hydrology in Matra Mountains (Hungary). Biologia 61: 261–265.CrossRefGoogle Scholar
  5. Haszpra, L., Z. Barcza, K. J. Davis and K. Tarczay. 2005. Long-term tall tower carbon dioxide flux monitoring over an area of mixed vegetation. Agricultural and Forest Meteorol. 132: 58–77.CrossRefGoogle Scholar
  6. Jaksic, V., G. Kiely, J. Albertson, R. Oren, G. Katul, P. Leahy and K. A. Byrne. 2006. Net ecosystem exchange of grasslandin contrasting wet and dry years. Agricultural and Forest Meteorol. 139: 3–4: 323–334.CrossRefGoogle Scholar
  7. Liu, H. P., G. Peters and T. Foken. 2001. New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer. Boundary-Layer Meteorol. 100: 459–468.CrossRefGoogle Scholar
  8. Lloyd, J. and J. A. Taylor. 1994. On the temperature-dependence of soil respiration. Functional Ecol. 8: 315–323.CrossRefGoogle Scholar
  9. Moore, C. J. 1986. Frequency-response corrections for eddy-correlation systems. Boundary-Layer Meteorol. 37: 17–35.CrossRefGoogle Scholar
  10. Nagy, Z., K. Pinter, S. Czobel, J. Balogh, L. Horvath, S. Foti, Z. Barcza, T. Weidinger, Z. Csintalan, N. Q. Dinh, B. Grosz and Z. Tuba. 2007. The carbon budget of semi-arid grassland in a wet and a dry year in Hungary. Agriculture Ecosystems & Environment 121: 21–29.CrossRefGoogle Scholar
  11. Novick, K. A., P. C. Stoy, G. G. Katul, D. S. Ellsworth, M. B. S. Siqueira, J. Juang and R. Oren. 2004. Carbon dioxide and water vapor exchange in a warm temperate grassland. Oecologia 138: 259–274.CrossRefGoogle Scholar
  12. Pereira, J. S., J. A. Mateus, L. M. Aires, G Pita, C. Pio, J. S. David, V. Andrade, J. Banza, T. S. David, T. A. Paco and A. Rodrigues. 2007. Net ecosystem carbon exchange in three contrasting Mediterranean ecosystems - the effect of drought. Biogeosciences 4: 791–802.CrossRefGoogle Scholar
  13. Reichstein, M., E. Falge, D. Baldocchi, D. Papale, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, T. Gilmanov, A. Granier, T. Grunwald, K. Havrankova, H. Ilvesniemi, D. Janous, A. Knohl, T. Laurila, A. Lohila, D. Loustau, G. Matteucci, T. Meyers, F. Miglietta, J. M. Ourcival, J. Pumpanen, S. Rambal, E. Rotenberg, M. Sanz, J. Tenhunen, G. Seufert, F. Vaccari, T. Vesala, D. Yakir and R. Valentini. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biol. 11: 1424–1439.CrossRefGoogle Scholar
  14. Reichstein, M., P. Ciais, D. Papale, R. Valentini, S. Running, N. Viovy, W. Cramer, A. Granier, J. Ogee, V. Allard, M. Aubinet, C. Bernhofer, N. Buchmann, A. Carrara, T. Grunwald, M. Heimann, B. Heinesch, A. Knohl, W. Kutsch, D. Loustau, G. Manca, G. Matteucci, F. Miglietta, J. M. Ourcival, K. Pilegaard, J. Pumpanen, S. Rambal, S. Schaphoff, G. Seufert, J. F. Soussana, M. J. Sanz, T. Vesala and M. Zhao. 2007. Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Global Change Biol. 13: 634–651.CrossRefGoogle Scholar
  15. van der Molen, M. K., J. H. C Gash and J. A. Elbers. 2004. Sonic anemometer (co)sine response and flux measurement - II. The effect of introducing an angle of attack dependent calibration. Agricultural and Forest Meteorol. 122: 95–109.CrossRefGoogle Scholar
  16. Urban, O., Ac, A., Kalina, J., Priwitzer, T., Sprtova, M., Spunda, V. Marek, M. V. 2007. Temperature dependences of carbon assimilation processes in four dominant species from mountain grassland ecosystem. Photosynthetica 45: 392–399.CrossRefGoogle Scholar
  17. Vickers, D. and L. Mahrt. 1997. Quality control and flux sampling problems for tower and aircraft data. J. Atmospheric and Oceanic Technol. 14: 512–526.CrossRefGoogle Scholar
  18. Webb, E. K.,G. I. PearmanandR. Leuning. 1980. Correction of flux measurements for density effects due to heat and water-vapor transfer. Quart. J. Royal Meteorol.Soc. 106: 85–100.CrossRefGoogle Scholar
  19. Wilczak, J. M., S. P. Oncley and S. A. Stage. 2001. Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol. 99: 127–150.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • K. Pintér
    • 1
    Email author
  • Z. Barcza
    • 2
  • J. Balogh
    • 3
  • Sz. Czóbel
    • 1
  • Zs. Csintalan
    • 1
  • Z. Tuba
    • 1
    • 3
  • Z. Nagy
    • 1
  1. 1.Institute of Botany and Ecophysiology, Faculty of Environmental and Agricultural SciencesSzent István UniversityGödöllőHungary
  2. 2.Department of MeteorologyInstitute of Geography and Earth Sciences, Faculty of Sciences, Eötvös Loránd UniversityBudapestHungary
  3. 3.Plant Ecology Research Group of Hungarian Academy of SciencesSzent István UniversityGödöllőHungary

Personalised recommendations