Elevated CO2 affects the content of glomalin related soil protein in xeric temperate loess and temperate semi-desert sand grasslands


Monoliths of temperate loess grassland and temperate semi-desert sand grassland have been exposed to elevated CO2 (700 μmol mol-1) and present ambient CO2 concentration in a 6-year open top chamber (OTC) experiment. In loess grassland elevated CO2 increased both biomass and vegetation cover, whereas there was no similar effect found in semi-desert grassland. The content of glomalin related soil protein (GRSP) increased in both loess and sand grasslands under CO2 enrichment (early summer aspect). The increase was higher in the case of easily extractable fraction (EEG), representing 14.7 and 22.2% of the chambered control’s EEG, for loess and sand grassland respectively. In the case of total glomalin the increase was much lower 7.9% (loess) and 2.6% (sand). On the basis of differences between elevated and ambient CO2 treatment we could conclude that elevated CO2 promoted C-deposition in xeric temperate grassland in early summer. Increases of EEG indicate an efficient partitioning of the recently fixed carbon to the soil.



open top chamber


glomalin related soil protein


Bradford reactive soil protein


easily extractable GRSP


total GRSP


leaf area index


  1. Ashenden, T.W., R. Baxter and C.R. Rafarel. 1992. An inexpensive system for exposing plants inthe fieldto elevated concentrations of CO2. Plant Cell Environ. 15: 365–372.

    CAS  Article  Google Scholar 

  2. Braun-Blanquet, J. 1964. Pflanzensoziologie. Wien, New-York.

    Book  Google Scholar 

  3. Campbell, B.D., D.M. Stafford-Smith, A.J. Ash, J. Fuhrer, R.M. Gifford, P. Hiernaux, S.M. Howden, M.B. Jones, J.A. Ludwig, R. Manderscheid, J.A. Morgan, P.C.D. Newton, J. Nösberger, C.E. Owensby, J.F. Soussana, Z. Tuba and C. ZouZhon. 2000. A synthesis of recent global change research on pasture and rangeland production: reduced uncertainties and their management implications. Agric. Ecosyst. Environ. 82: 39–55.

    Article  Google Scholar 

  4. Engloner, A.I., D. Kovács, J. Balogh and Z. Tuba. 2003. Anatomical and eco-physiological changes in leaves of couch-grass (Elymus repens L.), a temperate loess grassland species, after 7 years growth under elevated CO2 concentration. Photosynthetica 41, 185–189.

    Article  Google Scholar 

  5. Fekete, G., Z. Tuba and E. Melkó.1988. Background processes at the population level during succession in grasslands on sand. Vegetatio 77: 33–41.

    Article  Google Scholar 

  6. Jones, M.B. and A. Donnelly. 2004. Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol. 164: 423–439.

    Article  Google Scholar 

  7. Jones, D.L., A. Hodge and Y. Kuzyakov. 2004. Plant and mycorrhizal regulation of rhizodeposition. New Phytol. 163: 459–480.

    CAS  Article  Google Scholar 

  8. Norby, R.J. and Y. Luo. 2004. Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol. 162: 281–293.

    Article  Google Scholar 

  9. Nowak, R.S., D.S. Ellsworth and S.D. Smith. 2004. Functional responses of plants to elevated atmospheric CO2 - do photosyn-thetic and productivity data from FACE experiments support early predictions? New Phytol. 162: 253–280.

    Article  Google Scholar 

  10. Paterson, E., J.M. Hall, E.A.S. Rattray, B.S. Griffiths, K. Ritz and K. Killham. 1997. Effect of elevated CO2 on rhizosphere carbon flow and soil microbial processes. Global Change Biol. 3: 363–377.

    Article  Google Scholar 

  11. Pendall, E., A.R. Mosier and J.A. Morgan. 2004a. Rhizodeposition stimulated by elevated CO2 in a semiarid grassland. New Phytol. 162: 447–458.

    Article  Google Scholar 

  12. Pendall, E., S. Bridgham, P.J. Hanson, B. Hungate, D.W. Kicklighter, D.W. Johnson, B.E. Law, Y.Q. Luo, M. Megonigal-Olsrud, M.G. Ryan and S.Q. Wan. 2004b. Below-ground process responses to elevated CO2 and temperature:a discussion of observations, measurement methods, and models. New Phytol. 162: 311–322.

    Article  Google Scholar 

  13. Rillig, M.C., S.F. Wright, B.A. Kimball, P.J. Pinter, G.W. Wall, M.J. Ottmanand and S.W. Leavitt. 2001. Elevated carbon dioxide and irrigation effects on water stable aggregates in a Sorghum field: a possible role for arbuscular mycorrhizal fungi. Global Change Biol. 7: 333–337.

    Article  Google Scholar 

  14. Rillig, M.C. 2004. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci. 84: 355–363.

    Article  Google Scholar 

  15. Rogers, H.H., B.G. Runion and S.V. Krupa.1994. Plant-responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environ. Pollut. 83:155–189.

    CAS  Article  Google Scholar 

  16. Szerdahelyi, T., J. Nagy, Sz. Fóti, Sz. Czóbel, J. Balogh and Z. Tuba. 2004. Botanical composition and some CO2 exchange characteristics of temperate semi-desert sand grassland in Hungary under present-day and elevated air CO2 concentracions. Ekologia (Bratisl.) 22: 124–163.

    Google Scholar 

  17. Szente, K., Z. Nagy and Z. Tuba. .... Enhanced water use efficiency in dry loess grassland species grown at elevated air CO2 concentration. Photosynthetica, 35: 637–640.

  18. Tuba, Z., K. Szente, Z. Nagy, Z. Csintalan and J. Koch. 1996. Responses of CO2 assimilation, transpiration and water use efficiency to long-term elevated CO2 in perennial C3 xeric loess steppe species. J. Plant Physiol. 148: 356–361.

    CAS  Article  Google Scholar 

  19. Tuba, Z., M.B. Jones, K. Szente, Z. Nagy, L. Garvey and R. Baxter. 1998. Some ecophysiological and production responses of grasslands to long-term elevated CO2 under continental and atlantic climates. Ann. New York Acad. Sci. 851: 241–250.

    Article  Google Scholar 

  20. Tuba, Z., A. Raschi, G.M. Lanini, Z. Nagy, L. Helyes,D. Vodnik and L. Sanità di Toppi. 2003. Plant and ecosystem response to elevated carbon dioxide, in: Sanità di Toppi L, Pawlik-Skowroñska B (Eds.) Abiotic Stresses in Plants. Kluwer Academic Publishers, Dordrecht. pp:157–203.

    Chapter  Google Scholar 

  21. Urban,O., D. Janouš, R. Pokorný, I. Marková, M. Pavelka, Z. Fojtík, M. Šprtová, J. Kalina and M.V. Marek. 2001. Glass domes with adjustable windows: A novel technique for exposing juvenile forest stands to elevated CO2 concentration. Photosyn-thetica 39: 395–401.

    Article  Google Scholar 

  22. Zólyomi, B. and G. Fekete. 1994. The Pannonian loess steppe: differentiation in space and time. Abstr. Bot. 18: 29–41.

    Google Scholar 

  23. Vaccari, F.P., I. Bettarini, A. Giuntoli, F. Miglietta, A. Raschi. 2001. Mediterranean grassland community under elevated CO2: observations from a CO2 spring. Journal of Mediterranean Ecology 2: 41–50.

    Google Scholar 

  24. Wright, S.F. and A. Upadhyaya. 1996. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 161: 575–586.

    CAS  Article  Google Scholar 

  25. Wright, S.F. and A. Upadhyaya. 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198: 97–107.

    CAS  Article  Google Scholar 

  26. Wright, S.F., J.L. Starr and I.C. Paltineanu. 1999. Changes in aggregate stability and concentration of glomalin during tillage management transition. Soil Sci. Soc. Am. J. 63: 1825–1829.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to D. Vodnik.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Vodnik, D., Maček, I., Péli, E. et al. Elevated CO2 affects the content of glomalin related soil protein in xeric temperate loess and temperate semi-desert sand grasslands. COMMUNITY ECOLOGY 9, 161–166 (2008). https://doi.org/10.1556/ComEc.9.2008.S.21

Download citation


  • Carbon sequestration
  • Global change
  • Grassland
  • Mycorrhiza
  • Soil organic matter