Advertisement

Community Ecology

, Volume 9, Supplement 1, pp 161–166 | Cite as

Elevated CO2 affects the content of glomalin related soil protein in xeric temperate loess and temperate semi-desert sand grasslands

  • D. VodnikEmail author
  • I. Maček
  • E. Péli
  • U. Videmšek
  • Z. Tuba
Article

Abstract

Monoliths of temperate loess grassland and temperate semi-desert sand grassland have been exposed to elevated CO2 (700 μmol mol-1) and present ambient CO2 concentration in a 6-year open top chamber (OTC) experiment. In loess grassland elevated CO2 increased both biomass and vegetation cover, whereas there was no similar effect found in semi-desert grassland. The content of glomalin related soil protein (GRSP) increased in both loess and sand grasslands under CO2 enrichment (early summer aspect). The increase was higher in the case of easily extractable fraction (EEG), representing 14.7 and 22.2% of the chambered control’s EEG, for loess and sand grassland respectively. In the case of total glomalin the increase was much lower 7.9% (loess) and 2.6% (sand). On the basis of differences between elevated and ambient CO2 treatment we could conclude that elevated CO2 promoted C-deposition in xeric temperate grassland in early summer. Increases of EEG indicate an efficient partitioning of the recently fixed carbon to the soil.

Keywords

Carbon sequestration Global change Grassland Mycorrhiza Soil organic matter 

Abbreviations

OTC

open top chamber

GRSP

glomalin related soil protein

BRSP

Bradford reactive soil protein

EEG

easily extractable GRSP

TG

total GRSP

LAI

leaf area index

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashenden, T.W., R. Baxter and C.R. Rafarel. 1992. An inexpensive system for exposing plants inthe fieldto elevated concentrations of CO2. Plant Cell Environ. 15: 365–372.CrossRefGoogle Scholar
  2. Braun-Blanquet, J. 1964. Pflanzensoziologie. Wien, New-York.CrossRefGoogle Scholar
  3. Campbell, B.D., D.M. Stafford-Smith, A.J. Ash, J. Fuhrer, R.M. Gifford, P. Hiernaux, S.M. Howden, M.B. Jones, J.A. Ludwig, R. Manderscheid, J.A. Morgan, P.C.D. Newton, J. Nösberger, C.E. Owensby, J.F. Soussana, Z. Tuba and C. ZouZhon. 2000. A synthesis of recent global change research on pasture and rangeland production: reduced uncertainties and their management implications. Agric. Ecosyst. Environ. 82: 39–55.CrossRefGoogle Scholar
  4. Engloner, A.I., D. Kovács, J. Balogh and Z. Tuba. 2003. Anatomical and eco-physiological changes in leaves of couch-grass (Elymus repens L.), a temperate loess grassland species, after 7 years growth under elevated CO2 concentration. Photosynthetica 41, 185–189.CrossRefGoogle Scholar
  5. Fekete, G., Z. Tuba and E. Melkó.1988. Background processes at the population level during succession in grasslands on sand. Vegetatio 77: 33–41.CrossRefGoogle Scholar
  6. Jones, M.B. and A. Donnelly. 2004. Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol. 164: 423–439.CrossRefGoogle Scholar
  7. Jones, D.L., A. Hodge and Y. Kuzyakov. 2004. Plant and mycorrhizal regulation of rhizodeposition. New Phytol. 163: 459–480.CrossRefGoogle Scholar
  8. Norby, R.J. and Y. Luo. 2004. Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol. 162: 281–293.CrossRefGoogle Scholar
  9. Nowak, R.S., D.S. Ellsworth and S.D. Smith. 2004. Functional responses of plants to elevated atmospheric CO2 - do photosyn-thetic and productivity data from FACE experiments support early predictions? New Phytol. 162: 253–280.CrossRefGoogle Scholar
  10. Paterson, E., J.M. Hall, E.A.S. Rattray, B.S. Griffiths, K. Ritz and K. Killham. 1997. Effect of elevated CO2 on rhizosphere carbon flow and soil microbial processes. Global Change Biol. 3: 363–377.CrossRefGoogle Scholar
  11. Pendall, E., A.R. Mosier and J.A. Morgan. 2004a. Rhizodeposition stimulated by elevated CO2 in a semiarid grassland. New Phytol. 162: 447–458.CrossRefGoogle Scholar
  12. Pendall, E., S. Bridgham, P.J. Hanson, B. Hungate, D.W. Kicklighter, D.W. Johnson, B.E. Law, Y.Q. Luo, M. Megonigal-Olsrud, M.G. Ryan and S.Q. Wan. 2004b. Below-ground process responses to elevated CO2 and temperature:a discussion of observations, measurement methods, and models. New Phytol. 162: 311–322.CrossRefGoogle Scholar
  13. Rillig, M.C., S.F. Wright, B.A. Kimball, P.J. Pinter, G.W. Wall, M.J. Ottmanand and S.W. Leavitt. 2001. Elevated carbon dioxide and irrigation effects on water stable aggregates in a Sorghum field: a possible role for arbuscular mycorrhizal fungi. Global Change Biol. 7: 333–337.CrossRefGoogle Scholar
  14. Rillig, M.C. 2004. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci. 84: 355–363.CrossRefGoogle Scholar
  15. Rogers, H.H., B.G. Runion and S.V. Krupa.1994. Plant-responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environ. Pollut. 83:155–189.CrossRefGoogle Scholar
  16. Szerdahelyi, T., J. Nagy, Sz. Fóti, Sz. Czóbel, J. Balogh and Z. Tuba. 2004. Botanical composition and some CO2 exchange characteristics of temperate semi-desert sand grassland in Hungary under present-day and elevated air CO2 concentracions. Ekologia (Bratisl.) 22: 124–163.Google Scholar
  17. Szente, K., Z. Nagy and Z. Tuba. .... Enhanced water use efficiency in dry loess grassland species grown at elevated air CO2 concentration. Photosynthetica, 35: 637–640.Google Scholar
  18. Tuba, Z., K. Szente, Z. Nagy, Z. Csintalan and J. Koch. 1996. Responses of CO2 assimilation, transpiration and water use efficiency to long-term elevated CO2 in perennial C3 xeric loess steppe species. J. Plant Physiol. 148: 356–361.CrossRefGoogle Scholar
  19. Tuba, Z., M.B. Jones, K. Szente, Z. Nagy, L. Garvey and R. Baxter. 1998. Some ecophysiological and production responses of grasslands to long-term elevated CO2 under continental and atlantic climates. Ann. New York Acad. Sci. 851: 241–250.CrossRefGoogle Scholar
  20. Tuba, Z., A. Raschi, G.M. Lanini, Z. Nagy, L. Helyes,D. Vodnik and L. Sanità di Toppi. 2003. Plant and ecosystem response to elevated carbon dioxide, in: Sanità di Toppi L, Pawlik-Skowroñska B (Eds.) Abiotic Stresses in Plants. Kluwer Academic Publishers, Dordrecht. pp:157–203.CrossRefGoogle Scholar
  21. Urban,O., D. Janouš, R. Pokorný, I. Marková, M. Pavelka, Z. Fojtík, M. Šprtová, J. Kalina and M.V. Marek. 2001. Glass domes with adjustable windows: A novel technique for exposing juvenile forest stands to elevated CO2 concentration. Photosyn-thetica 39: 395–401.CrossRefGoogle Scholar
  22. Zólyomi, B. and G. Fekete. 1994. The Pannonian loess steppe: differentiation in space and time. Abstr. Bot. 18: 29–41.Google Scholar
  23. Vaccari, F.P., I. Bettarini, A. Giuntoli, F. Miglietta, A. Raschi. 2001. Mediterranean grassland community under elevated CO2: observations from a CO2 spring. Journal of Mediterranean Ecology 2: 41–50.Google Scholar
  24. Wright, S.F. and A. Upadhyaya. 1996. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 161: 575–586.CrossRefGoogle Scholar
  25. Wright, S.F. and A. Upadhyaya. 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198: 97–107.CrossRefGoogle Scholar
  26. Wright, S.F., J.L. Starr and I.C. Paltineanu. 1999. Changes in aggregate stability and concentration of glomalin during tillage management transition. Soil Sci. Soc. Am. J. 63: 1825–1829.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • D. Vodnik
    • 1
    Email author
  • I. Maček
    • 1
  • E. Péli
    • 2
  • U. Videmšek
    • 1
  • Z. Tuba
    • 2
  1. 1.Agronomy DepartmentUniversity of Ljubljana, BFLjubljanaSlovenia
  2. 2.Departmental Plant Ecology Research Group of Hungarian Academy of Sciences and Department of Botany and Plant Physiology, Faculty of Agricultural and Environmental SciencesSzent István UniversityGödöllőHungary

Personalised recommendations