Advertisement

Community Ecology

, Volume 9, Supplement 1, pp 125–130 | Cite as

Soil-plant factors, others than the type of salt-specific anions are affecting the mycorrhiza colonisation of some halophytes

  • A. Füzy
  • T. Tóth
  • B. BiróEmail author
Article

Abstract

The relationship between some soil physical-chemical characteristics, with more focus on the types of salt-specific anions and the colonisation parameters of the arbuscular mycorrhizal fungi (AMF) were examined on the most dominant halophytes, grown at four saline soils in Hungary. At site Z (Zám) mainly the chloride, at site Ny (Nyírőlapos) mainly the sulphate ions dominated in the soil samples, while at site A (Apajpuszta) and site Zsz (Zabszék) the carbonate anions were the most frequent. A large colonisation variability of the AM fungi were found in the four saline sites and the studied halophytes. Among the affecting soil-plant factors a strong host dependency was recorded with almost no mycorrhiza colonisation on Puccinellia limosa and the highest values at the Plantago maritima and Aster tripolium. As a function of the salt-levels a relative location of the halophytes could be found at each sites. The AMF colonisation intensity (M%) and functioning, measured as arbusculum richness (A%) was reduced with the overall increasing salinity, more particularly with the total cation-content of the soils. The deleterious effect of some other abiotic factors, i.e., the very poor or rich nutrient availability and the humus accumulation tended to be also negatively correlated by the mycorrhizal parameters.

Keywords

salinity salt-specific anions AM fungi halophytes environmental factors correlation-regression study 

Abbreviations

AMF

arbuscular mycorrhiza fungi; M% – mycorrhiza intensity of the root system

A%

arbusculum richness.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aliasgharzadeh, N.N., S. Rastin, H. Towfighi and A. Alizadeh. 2001. Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11:119–122.CrossRefGoogle Scholar
  2. Al-Karaki, G.N. 2000. Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54.CrossRefGoogle Scholar
  3. Barea, J.M., R. Azcón and G. Azcón-Anguilar. 2002. Mycorrhizosphere interactions to improve plant fittness and soil quality. Antonie van Leeuwenhoek, 81: 343–351.CrossRefGoogle Scholar
  4. Biró, B., I. Villányi and K. Köves-Péchy. 2002. Abundance and adaptation level of some soil-microbes in salt-affected soils. Agrokémia, Talajtan 50: 99–106.CrossRefGoogle Scholar
  5. Biró, B., K. Posta, A. Füzy, I. Kádár and T. Németh. 2005. Mycorrhizal functioning as part of the survival mechanisms of barley (Hordeum vulgare L) at long-term heavy metal stress. Acta Biol Szegediensis 49: 65–68.Google Scholar
  6. Buzás, I. (ed.). 1988. Methods in soil science and agrochemistry 2. Mezőgazdasági Kiadó. Budapest (in Hungarian).Google Scholar
  7. Buzás, I. (ed.) 1983. Pocket-book of plant-nutrient-necessity. Mezőgazdasági kiadó. Budapest (in Hungarian), p. 76–77.Google Scholar
  8. Cantrell, I.C. and R.G. Linderman. 2001. Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233 (2): 269–281.CrossRefGoogle Scholar
  9. Carvalho, L.M., P.M. Correia, I. Cacador and M.A. Martins-Loucao. 2003. Effect of salinity and flooding on the infectivity of salt marsch mycorrhizal fungi in Aster tripolium L. Biol. Fertil Soils 38: 137–143.CrossRefGoogle Scholar
  10. Füzy, A., B. Biró, T. Tóth, J. Hildebrandt and H. Bothe. 2008. Drought, but not salinity determines the apparent effectiveness of halophytes colonised by arbuscular mycorrhizal fungi. J. Plant Physiol. 165: 1181–1192.CrossRefGoogle Scholar
  11. Giovannetti, M. 1985. Seasonal variations of vesicular-arbuscular mycorrhizas and endogonaceous spores in a maritime sand dune. Transact. British Mycol. Society 84: 679–684.CrossRefGoogle Scholar
  12. Hartmund, U., N.V. Schaesberg, J.H. Graham and J.P. Syvertsen. 1987. Salinity and flooding stress effects on mycorrhizal and non-mycorrhizal citrus rootstock seedlings. Plant Soil 104: 37–43.CrossRefGoogle Scholar
  13. Hasegawa, P.M., R.A. Bressan and A.K. Hanada. 1986. Cellular mechanisms of salinity tolerance. Hort. Sci. 21: 1317–1324.Google Scholar
  14. Hildebrant, U., K. Janetta, F. Ouziad, B. Renne, K. Nawrath and H. Bothe. 2000. Arbuscularmycorrhizal colonization of halophytes in Central European salt marshes. Mycorrhiza 10: 1–9.CrossRefGoogle Scholar
  15. Hirrel, M.C. and J.W. Gerdemann. 1980. Improved growth of onion and bell pepper in saline soils by two vesicular-arbuscular mycorrhizal fungi. Soil Sci. Soc. Am. J. 44: 654–655.CrossRefGoogle Scholar
  16. Hoefnagels, M.H., S.W. Broome and S.R. Shafer. 1993. Vesicular arbuscular mycorrhizae in salt marshes in north Carolina. Estuaries 16: 851–858.”CrossRefGoogle Scholar
  17. Juniper, S and L. Abbott. 1993. Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 4: 45–57.CrossRefGoogle Scholar
  18. Landwehr, M., U. Hildebrandt, P. Wilde, K. Nawrath, T. Tóth, B. Biró, and H. Bothe. 2002. The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza 12:199–211 .CrossRefGoogle Scholar
  19. McMillen, B.G., S. Juniper and L.K. Abbott. 1998. Inhibition of hyphal growth of a vesicular-arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biol. Biochem. 30: 1639–1646.CrossRefGoogle Scholar
  20. Murakeozy, E. P. 2003. Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. J. Plant Physiol. 160:395–401.CrossRefGoogle Scholar
  21. Murakeozy, E. P. 2002. Seasonal accumulation pattern of pinitol and other carbohydrates in Limonium gmelini subsp hungarica. J. Plant Physiol. 159:485–490.CrossRefGoogle Scholar
  22. Nagy, Z., Tuba, Z., Zsoldos, F. and Erdei, L. 1995. CO2 exchange and water relation responses of maize and sorghum during water and salt stress. J. Plant Physiol. 145: 539–544.CrossRefGoogle Scholar
  23. Poss, J.A. 1985. Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate. Plant Soil 88: 307–319.CrossRefGoogle Scholar
  24. Regvar, M., K. Vogel, N. Irgel, U. Hildebrandt, P. Wilde and H. Bothe. 2003. Colonization of pennycresses (Thlaspi spp.) of the Brassicaceae by arbuscular mycorrhizal fungi. J. Plant Physiol. 160: 615–626.CrossRefGoogle Scholar
  25. Ruiz-Lozano, J.M., R. Azcón and M. Gómez. 1996. Allevation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiol Plant. 98: 767–772.CrossRefGoogle Scholar
  26. Ruiz-Lozano, J.M. and R. Azcón. 2000. Symbiotic efficiency and infectivity of an autochtonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10: 137–143.CrossRefGoogle Scholar
  27. Schwarz, M and J. Gale. 1984. Growth response to salinity at high levels of carbon dioxide. J. Exp. Bot. 35: 193–196.CrossRefGoogle Scholar
  28. Szabolcs, I. 1989. Salt-affected Soils. CRC Press, Boca Raton, Fl.Google Scholar
  29. Szabolcs, I. 1998. Concepts, assesment and control of soils affected by salinization. Adv. Geoecol. 31:469–476.Google Scholar
  30. Trouvelot, A., J.L. KoughtandV. Gianinazzi-Pearson. 1986. Mesure du taux de mycorhization VA d’un systéme radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: 1er Symposium Europeen sur les Mycorrhizes. pp. 217–221. INRA, Paris.Google Scholar
  31. Zahran, H.H. 1997. Diversity, adaptation and activity of the bacterial flora in saline environments. Biol. Fertil. Soil 25: 211–223.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Research Institute for Soil Science and Agricultural Chemistry of Hungarian Academy of SciencesLaboratory of RhizobiologyBudapestHungary

Personalised recommendations