Advertisement

Community Ecology

, Volume 9, Supplement 1, pp 91–96 | Cite as

Effects of irrigation on community composition and carbon uptake in Pannonian loess grassland monoliths

  • Sz. CzóbelEmail author
  • O. Szirmai
  • J. Nagy
  • J. Balogh
  • Zs. Ürmös
  • E. Péli
  • Z. Tuba
Article

Abstract

Grassland ecosystems in the Carpathian Basin may be particularly vulnerable to current and predicted changes in precipitation, and ecosystem responses to potential effects of water are not well understood. To examine how water addition can affect the species composition and structure, and CO2-flux of a Central European natural steppe plant community, grassland monoliths were irrigated for three consecutive years at Gödöllő, from 2002 through 2004. The loess grassland studied by ex situ is a characteristic plant association of Hungary and similar vegetation can be found in other temperate regions. The treatment consisted of spray irrigation during night-time only in the growing season as well as aboveground biomass removal twice per year. Interannual and intraannual dynamics of species richness, Shannon Diversity, percentage cover, and different functional groups (monocots/dicots; plant life forms; social behaviour types; C4/C3 plants), and Net Ecosystem CO2 Exchange in treated and untreated permanent plots, were studied simultaneously. To measure NEE and water vapour at stand level a self-developed, portable, non-destructive open chamber system (d=60cm) was used. The majority of the examined parameters varied considerably among years at both irrigated and control, but concerning carbon fluxes water addition effects were evident in dry periods only. At the treated plots, in general species richness, Shannon Diversity, the number of plant life forms and social behaviour types, the ratio of dicots and C4 plants declined with addition of water. Our study proved that decline in species richness and Shannon diversity is not necessarily followed by the reduction of stand physiological (synphysiological) processes.

Keywords

Canopy chamber Diversity Functional groups Loess grassland Monolith Net ecosystem CO2 exchange Species composition and structure Water addition 

Abbreviation

ANOVA

Analysis of Variance

Hs

Shannon Diversity

LAI

Leaf Area Index

NDVI

Normalized Difference Vegetation Index

NEE

Net Ecosystem CO2 Exchange

PPFD

Photosynthetically Active Photon Flux Density

SBT

Social Behaviour Types

SWC

Soil Water Content

Tair

Air Temperatur

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borhidi, A. 1993. A magyar flóra szociális magatartás típusai, természetességi és relatív ökológiai értékszámai (Social behaviour types of the Hungarian Flora, its naturalness and relative ecological indicator values.). Janus Pannonius Tudományegyetem, Pécs (in Hungarian). p. 93.Google Scholar
  2. Bouma, T. J. and D. R. Bryla. 2000. On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentration. Plant and Soil 227:215–221.CrossRefGoogle Scholar
  3. Ciais, Ph., M. Reichstein, N. Viovy, A. Granier, J. Ogée, V. Allard, M. Aubinet, N. Buchmann, Chr. Bernhofer, A. Carrara, F. Chevallier, N. De Noblet, A. D. Friend, P. Friedlingstein, T. Grünwald, B. Heinesch, P. Keronen, A. Knohl, G. Krinner, D. Loustau, G. Manca, G. Matteucci, F. Miglietta, J. M. Ourcival, D. Papale, K. Pilegaard, S. Rambal, G. Seufert, J. F. Soussana, M. J. Sanz, E. D. Schulze, T. Vesala and R. Valentini. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437: 529–533.CrossRefGoogle Scholar
  4. Czóbel, Sz., J. Balogh, Sz. Fóti, E. R. Péli, T. Szerdahelyi, O. Szirmai, Z. Nagy and Z. Tuba. 2004. Long-term effects of irrigation and fertilization on stand CO2 fluxes and soil biochemical processes in a Hungarian loess grassland. Proceedings of the III. Alps-Adria Scientific Workshop (Dubrovnik, Croatia). pp. 130–134.Google Scholar
  5. Czóbel, Sz., Sz. Fóti, J. Balogh, Z. Nagy, S. Bartha and Z. Tuba. 2005a. Scale analysis in grassland vegetation. A novel approach. Photosynthetica 43: 267–272.CrossRefGoogle Scholar
  6. Czóbel, Sz., J. Balogh, O. Szirmai and Z. Tuba. 2005b. Floating chamber a potential tool for measuring CO2 fluxes of aquatic plant communities. Cereal Research Communications 33: 165–168.CrossRefGoogle Scholar
  7. Czóbel, Sz., J. Balogh, Sz. Fóti, O. Szirmai and Z. Nagy. 2008. Temporal changes in biomass and soil element contents under different manipulations of temperate grasslands. Cereal Research Communications 36: 1963–1966.Google Scholar
  8. Dugas, A. F. 2007. Drought effects on above- and belowground production of a grazed temperate grassland ecosystem. Oecologia 152: 131–139.CrossRefGoogle Scholar
  9. Flanagan, L. B., L. A. Wever and P. J. Carlson. 2002. Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Global Change Biology 7: 599–615.CrossRefGoogle Scholar
  10. Foster, B. L. and L. D. Timothy. 2004. Grassland diversity and productivity: The interplay of resource availability and propagule pools. Ecology 85: 1541–1547.CrossRefGoogle Scholar
  11. Golluscio, R. A., O. E. Sala and W. K. Lauenroth. 1998. Differential use of large summer rainfall events by shrubs and grasses: a manipulative experiment in the Patagonian steppe. Oecologia 115: 17–25.CrossRefGoogle Scholar
  12. Harpole, W. S., D. L. Potts and K. N. Suding. 2007. Ecosystem responses to water and nitrogen amendment in a California grassland. Global Change Biology 13: 2341–2348.CrossRefGoogle Scholar
  13. Kirchner, T. B. 1977. The effects of resource enrichment on the diversity of plants and arthropods in a shortgrass prairie. Ecology 58: 1334–1344.CrossRefGoogle Scholar
  14. Knapp, A. K., J. M. Briggs and J. K. Koelliker. 2004. Frequency and extent of water limitation to primary production in a mesic temperate grassland. Ecosystems 4: 19–28.CrossRefGoogle Scholar
  15. Lauenroth, W. K., J. L. Dodd and P.L. Sims. 1978. The effects of water and nitrogen induced stresses on plant community structure in a semiarid grassland. Oecologia 36: 211–222.CrossRefGoogle Scholar
  16. Mueller-Dombois, D. and H. Ellenberg. 1974. Aims and Methods of Vegetation Ecology. Wiley, New York. pp. 45–66.Google Scholar
  17. Nagy, Z., K. Pintér, Sz. Czóbel, J. Balogh, L. Horváth, Sz. Fóti, Z. Barcza, T. Weidinger, Zs. Csintalan, N.Q. Dinh, B. Grosz and Z. Tuba. 2007. The carbon budget of a semiarid grassland in a wet and a dry year in Hungary. Agriculture, Ecosystems and Environment 121: 21–29.CrossRefGoogle Scholar
  18. Nilsen P., I. Børja, H. Knutsen and R. Brean. 1998. Nitrogen and drought effects on ectomycorrhizae of Norway spruce [Picea abies L. (Karst.)]. Plant and Soil 198: 179–184.CrossRefGoogle Scholar
  19. Sala, O. E. and W. K. Lauenroth. 1982. Small rainfall events: An ecological role in semiarid regions. Oecologia 53: 301–304.CrossRefGoogle Scholar
  20. Semmartin, M., M. Oyarzabal, J. Loreti and M. Oesterheld. 2007. Controls of primary productivity and nutrient cycling in a temperate grassland with year-round production. Austral Ecology 32: 416–428.CrossRefGoogle Scholar
  21. Simon, T. 2000. A magyarországi edényes flóra határozója (Plant identification handbook of the Hungarian vascular plants). Nemzeti Tankönyvkiadó, Budapest (in Hungarian). p. 846Google Scholar
  22. Soussana, J. F., V. Allard, K. Pilegaard, P. Ambus, C. Amman, C. Campbell, E. Ceschia, J. Clifton-Brown, S. Czóbel, R. Domingues, C. Flechard, J. Fuhrer, A. Hensen, L. Horvath, M. Jones, G Kasper, C Martin, Z. Nagy, A. Neftel, A. Raschi, S. Baronti, R. M. Rees, U. Skiba, P. Stefani, G. Manca, M. Sutton, Z. Tuba and R. Valentini. 2007. Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agriculture, Ecosystems and Environment 121: 121–134.CrossRefGoogle Scholar
  23. Suyker, A.E., S.B. Verma, G.G. Burba, T.J. Arkebauer,D.T. Walters and K.G. Hubbard. 2004. Growing season carbon dioxide exchange in irrigated and rainfed maize. Agric. Forest Meteorol. 124: 1–13.CrossRefGoogle Scholar
  24. Yuste, J. C., I. A. Janssens, A. Carrara and R. Ceulemans 2004. Annual Q(10) of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Global Change Biology 10: 161–169.CrossRefGoogle Scholar
  25. Van Der Maarel, E. 1979. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39: 97–114.CrossRefGoogle Scholar
  26. Varnamkhasti, A. S., D. G. Milchunas, W. K. Lauenroth and H. Goetz. 1995. Production and rain use efficiency in short-grass steppe: grazing history, defoliation and water resource. Journal of Vegetation Science 6: 787–796.CrossRefGoogle Scholar
  27. Weltzin, J. F., M. E. Loik, S. Sscwinning, D. G. Williams, P. A. Fay, B. M. Haddad, J. Harte, T. E. Huxman, A. K. Knapp, G. Lin, W. T. Pockman, M. R. Shaw,E. E. Small, M. D. Smith, S. D. Smith, D.T. Tissue and J. C. Zak. 2003. Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience 53: 941–952.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Sz. Czóbel
    • 1
    Email author
  • O. Szirmai
    • 2
  • J. Nagy
    • 1
  • J. Balogh
    • 2
  • Zs. Ürmös
    • 1
  • E. Péli
    • 2
  • Z. Tuba
    • 1
    • 2
  1. 1.Institute of Botany & Ecophysiology, Szent István UniversityGödöllőHungary
  2. 2.Plant Ecological Research Group of Hungarian Academy of Sciences & Szent István UniversityGödöllőHungary

Personalised recommendations