Influence of soil type on N2O and CH4 soil fluxes in Hungarian grasslands

Abstract

Soil fluxes of methane and nitrous oxide were determined for grasslands on sandy, loess and clay soils in Hungary. As the direction of methane flux (emission or uptake) depends on the soil characteristics bi-directional fluxes were observed. For sandy and loess grasslands the sink and source processes are practically balanced showing a negligible low mean methane flux for 2006−2007 (−0.04-0.05 kg CH4 ha-1 yr-1 ). In this period the clay grassland functioned as a weak sink for methane (−0.34 kgCH4 ha-1 yr-1). Average soil nitrous oxide emission fluxes for the period of 2002–2006 was 0.5 kg Ν ha-1 yr-1 for sandy and loess while 0.2 kg Ν ha-1 yr-1 for clay grassland, respectively, with substantial inter-annual variations. Taking into account the total atmospheric N-input 0 to 8 per cent of deposited nitrogen is emitted from the soils in the form of N2O as the intermediate product of soil denitrification processes.

References

  1. Born, M., H. Dörr and I. Levin. 1990. Methane consumption in aerated soils of the temperate zone. Tellus 42B: 2–8.

    Article  Google Scholar 

  2. Bodelier, P. L.E. and H.J. Laanbroek. 2004. Nitrogen as a regulatory factor ofmethanein soils and sediments. FEMS Microbiol. Ecol. 47: 265–277.

    CAS  Article  Google Scholar 

  3. Bouwman, A.F. 1996. Direct emission of nitrous oxide from agricultural soils. Nutrient Cycl. Agroecosys. 46: 53–70.

    CAS  Article  Google Scholar 

  4. Brumme, R. and W. Borken.1999. Site variation in methane oxidation as affected by atmospheric deposition and type of temperate forest ecosystem, Global Biogeochem. Cycles 13: 493–501.

    CAS  Article  Google Scholar 

  5. Butterbach-Bahl, K., R. Gasche, L. Breuer and H. Papen. 1997. Fluxes of NO and N2O from temperate forest soils: Impact of forest type, Ndeposition and of liming on the NO and N2O emissions. Nutr. Cycl. Agroecosys. 48: 79–90.

    CAS  Article  Google Scholar 

  6. Castro, M.S., P.A. Steudler, J.M. Melillo and J.W. Chapman. 1995. Factors controlling atmospheric methane consumption by temperate forest soils. Global Biochem. Cycles 9: 1–10.

    CAS  Article  Google Scholar 

  7. Chapuis-Lardy, L., N. Wrage, A. Metay, J.-L. Chottes and M. Bernoux. 2007. Soils, a sink for N2O? A review. Global Change Biol. 13: 1–17.

    Article  Google Scholar 

  8. Crill, P.M., P.J. Martikainen, H. Nykanen and J. Silvola. 1994. Temperature and N-fertilization effects on methane oxidation in a drained peatland soil. Soil Biol. Biochem. 26: 1331–1339.

    CAS  Article  Google Scholar 

  9. Czóbel, Sz., Sz. Fóti, J. Balogh, Z. Nagy, S. Bartha and Z. Tuba. 2005. Chamber series and space-scale analysis of CO2 gas-exchange in grassland vegetation. A novel approach. Photosyn-thetica 43: 267–272.

    Article  Google Scholar 

  10. Davidson, E.A. 1991. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: J.E. Roger and W.B. Whitman (eds.), Microbial production and consumption of greenhouse gases: Methane, nitrogen oxides and halomethanes. Am. Soc. Microbiol. Washington DC. pp. 219–235.

  11. Del Grosso, S.J., W.J. Parton, A.R. Mosier, D.S. Ojima, D.S. Kumala and S. Phongpan. 2000. General model for N2O and N2 gas emissions from soils due to dentrification. Global Biogeochem. Cycles. 14: 1045–1060.

    Article  Google Scholar 

  12. Dörr, H., L. Katruff and I. Levin. 1993. Soil texture parameterization of the methane uptake in aerated soils. Chemosphere 26: 697–713.

    Article  Google Scholar 

  13. Fekete, G. 1992. The holistic view of succession reconsidered. Coenoses 7: 21–29.

    Google Scholar 

  14. Fekete, G., Z. Tuba. and E. Melkó. 1988. Background processes at the population level during succession in grasslands on sand. Vegetatio 77: 33–41.

    Article  Google Scholar 

  15. Firestone, M. K. and E.A. Davidson. 1989. Microbiological basis of NO and N2O production and consumption in soil. In: M.O. Andrea and D.S. Schimel (eds), Exchange of trace gases between terrestrial ecosystems and the atmosphere, John Wiley & Sons Ltd., Chichester, UK. pp. 7–21.

    Google Scholar 

  16. Flechard, C.R., P. Ambus, U. Skiba, R.M. Rees, A. Hensen, A. van Amstel,A. van den Pol-van Dasselaar, J.-F. Soussana, M.Jones, J. Clifton-Brown, A. Raschi, L. Horvath, A. Neftel, M. Jocher, C. Ammann, J. Leidfield, J. Fuhrer, P.L. Calanca, E. Thalman, K. Pilegaard, C. Di Marco, C. Campbell, E. Nemitz, K.J. Hargreaves, P. Levy, B.C. Ball, S. Jones, W.C.M. van de Bulk, T. Groot, M. Blom, R. Domingues, G. Kasper, V. Allard, E. Ceshia, P. Cellier, P. Laville, C. Henault, F. Bizouard, M. Abdalla, M. Williams, S. Baronti, F. Berretti, and B. Grosz. 2007. Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe. Agricult. Ecosys. and Environ. 121: 135–152.

    CAS  Article  Google Scholar 

  17. FÖMI. 2005. CORINE CLC50 Land Cover Data Base. Institute of Geodesy, Cartography and Remote Sensing, Hungary (FÖMI).

  18. Granli, T. and O.C. Bøckmann. 1994. Nitrous oxide from agriculture. Norw. J. Agric. Sci. 12: 1–128.

    Google Scholar 

  19. Grosz, B. Horváth, L. and Machon, A. 2008. Modelling soil fluxes of nitrogen and carbon gases above a semi arid grasslandin Hungary.Cereal Research Communications 36. Suppl. 5. pp. 1523–1526.

    CAS  Google Scholar 

  20. Hidy, D., Z. Barcza, L. Haszpra,G. Churkina and K. Trusilova. 2007. Parameter estimation for grassland carbon cycle using nonlinear inversion of BIOME-BGC. Cereal Res. Commun. 35: 453–456.

    Article  Google Scholar 

  21. IPCC. 2007. Climate Change 2007. Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Core Writing Team, Pachauri, R.K. and Reisinger, A. (eds.). IPCC, Geneva, Switzerland, 104 pp.

    Google Scholar 

  22. Knowles, R. 2000. Nitrogen cycle. In: J. Lederberg (ed.), Encyclopedia of Microbiology vol. 3, 2nd ed. Academic, San Diego, Calif. pp. 379–391.

    Google Scholar 

  23. Kugler, Sz., L. Horváth andA. Machon. 2008. Estimationofnitrogen flux between the atmosphere and aquatic/terrestrial ecosystems in Hungary. Environmental Pollution 150: 498–503.

    Article  Google Scholar 

  24. Maróti, I., Z. Tuba, and M. Csík. 1984. Changes of chloroplast ultrastructure and carbohydrate level in Festuca, Achillea and Sedum during drought and recovery. J. Plant Physiol. 116: 1–10.

    Article  Google Scholar 

  25. Nagy, Z., Sz. Czóbel, J. Balogh, L. Horváth, Sz. Fóti, K. Pintér, T. Weidinger, Zs. Csintalan and Z. Tuba. 2005. Some preliminary results of the Hungarian grassland ecological research: carbon cycling and greenhouse gas balances under changing. Cereal Res. Commun. 33: 279–281.

    Article  Google Scholar 

  26. Nagy, Z., K. Pintér, Sz. Czóbel, J. Balogh, L. Horváth, Sz. Fóti, T., Z. Barcza, Weidinger, Zs. Csintalan, N.Q. Dinh, B. Grosz and Z. Tuba. 2007. The carbon budget of semi-arid grassland in a wet and dry year in Hungary. Agric. Ecosys. Environ. 121: 21–29.

    CAS  Article  Google Scholar 

  27. van den Pol-van Dasselaar, A., M.L. van Beusichem and O. Onema. 1998. Effects of soil moisture content and temperature on methane uptake by grasslands on sandy soils. Plant Soil 204: 213–222.

    Article  Google Scholar 

  28. Prather, M., D. Drewent, P. Enhalt, E. Fraser, E. Sanhueza and X. Zhou. 1995. Other trace gases and atmospheric chemistry. In: J. Houghton et al. (eds.), Climate change,1994. Cambridge Univ. Press, Cambridge. pp. 77–126.

    Google Scholar 

  29. Segers, R. 1998. Methane production and methane consumption: a review of process underlying wetland methane fluxes. Biogeochem. 41: 23–51.

    CAS  Article  Google Scholar 

  30. Segers, R. and S.W.M. Kengen.1998. Methane production as a function of anaerobic carbon mineralization: a process model. Soil Biology and Biochem. 30: 1107–1117.

    CAS  Article  Google Scholar 

  31. Simojoki, A. and A. Jaakkola. 2000. Effect of nitrogen fertilization, cropping and irrigation on soil air composition and nitrous oxide emission in a loamy clay. Europ. J. Soil Sci. 51: 413–424.

    Article  Google Scholar 

  32. Steinkamp, R., K. Butterbach-Bahl and H. Papen. 2001. Methane oxidation by soils of an N limited and N fertilized spruce forest in the Black Forest, Germany. Soil Biol. Biochem. 33: 145–153.

    CAS  Article  Google Scholar 

  33. Szentes, Sz., Á. Kenéz, D. Saláta, M. Szabó and K. Penksza. 2007. Comparative researches and evaluations on grassland management and nature conservation in natural grassland of the Transdanubian mountain range. Cereal Res. Commun. 35: 1161–1164.

    Article  Google Scholar 

  34. Szerdahelyi, T., Fóti, Sz., Nagy, J., Czóbel, Sz., Balogh, J. and Tuba, Z. 2004. Species composition and CO2 exchange of a temperate loess grassland (Salvio-Festuceum rupicolae) at present-day and expected future air CO2 concentrations. Ekologia (Bratislava), 22.: 137–146.

    Google Scholar 

  35. Tuba, Z. 2005. Ecological Responses and Adaptations of Crops to Rising Atmospheric Carbon Dioxide. Haworth Press Inc., New York, USA. p. 414.

    Google Scholar 

  36. Tuba, Z., K. Szente, Z. Nagy, Zs. Csintalan and J. Koch. 1996. Responses of CO2assimilation, transpiration and water use efficiency to long-term elevated CO2 in perennial C3 xeric loess steppe species. J. Plant Physiol. 148: 356–361.

    CAS  Article  Google Scholar 

  37. Vor, T., J. Dyckmans, N. Loftfield, F. Beese and H. Flessa. 2003. Aeration effects on CO2, N2O, and CH4 emission and leachate composition of a forest soil. J. Plant Nutr. Soil Sci. 166: 39–45.

    CAS  Article  Google Scholar 

  38. Whalen, S.C. and W.S. Reeburgh. 1996. Moisture and temperature sensitivity of CH4 oxidation in boreal soils. Soil Biol. Biochem. 28: 1271–1281.

    CAS  Article  Google Scholar 

  39. Zólyomi, B. and G. Fekete. 1994. The Pannonian loess steppe: Differentiation in space and time. Abstracta Botanica 18: 29–41.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Horváth.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Horváth, L., Grosz, B., Machon, A. et al. Influence of soil type on N2O and CH4 soil fluxes in Hungarian grasslands. COMMUNITY ECOLOGY 9, 75–80 (2008). https://doi.org/10.1556/ComEc.9.2008.S.11

Download citation

Keywords

  • Grassland
  • Methane soil flux
  • Nitrous oxide soil flux