Advertisement

Community Ecology

, Volume 9, Supplement 1, pp 75–80 | Cite as

Influence of soil type on N2O and CH4 soil fluxes in Hungarian grasslands

  • L. HorváthEmail author
  • B. Grosz
  • A. Machon
  • J. Balogh
  • K. Pintér
  • Sz. Czóbel
Article
  • 2 Downloads

Abstract

Soil fluxes of methane and nitrous oxide were determined for grasslands on sandy, loess and clay soils in Hungary. As the direction of methane flux (emission or uptake) depends on the soil characteristics bi-directional fluxes were observed. For sandy and loess grasslands the sink and source processes are practically balanced showing a negligible low mean methane flux for 2006−2007 (−0.04-0.05 kg CH4 ha-1 yr-1 ). In this period the clay grassland functioned as a weak sink for methane (−0.34 kgCH4 ha-1 yr-1). Average soil nitrous oxide emission fluxes for the period of 2002–2006 was 0.5 kg Ν ha-1 yr-1 for sandy and loess while 0.2 kg Ν ha-1 yr-1 for clay grassland, respectively, with substantial inter-annual variations. Taking into account the total atmospheric N-input 0 to 8 per cent of deposited nitrogen is emitted from the soils in the form of N2O as the intermediate product of soil denitrification processes.

Keywords

Grassland Methane soil flux Nitrous oxide soil flux 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Born, M., H. Dörr and I. Levin. 1990. Methane consumption in aerated soils of the temperate zone. Tellus 42B: 2–8.CrossRefGoogle Scholar
  2. Bodelier, P. L.E. and H.J. Laanbroek. 2004. Nitrogen as a regulatory factor ofmethanein soils and sediments. FEMS Microbiol. Ecol. 47: 265–277.CrossRefGoogle Scholar
  3. Bouwman, A.F. 1996. Direct emission of nitrous oxide from agricultural soils. Nutrient Cycl. Agroecosys. 46: 53–70.CrossRefGoogle Scholar
  4. Brumme, R. and W. Borken.1999. Site variation in methane oxidation as affected by atmospheric deposition and type of temperate forest ecosystem, Global Biogeochem. Cycles 13: 493–501.CrossRefGoogle Scholar
  5. Butterbach-Bahl, K., R. Gasche, L. Breuer and H. Papen. 1997. Fluxes of NO and N2O from temperate forest soils: Impact of forest type, Ndeposition and of liming on the NO and N2O emissions. Nutr. Cycl. Agroecosys. 48: 79–90.CrossRefGoogle Scholar
  6. Castro, M.S., P.A. Steudler, J.M. Melillo and J.W. Chapman. 1995. Factors controlling atmospheric methane consumption by temperate forest soils. Global Biochem. Cycles 9: 1–10.CrossRefGoogle Scholar
  7. Chapuis-Lardy, L., N. Wrage, A. Metay, J.-L. Chottes and M. Bernoux. 2007. Soils, a sink for N2O? A review. Global Change Biol. 13: 1–17.CrossRefGoogle Scholar
  8. Crill, P.M., P.J. Martikainen, H. Nykanen and J. Silvola. 1994. Temperature and N-fertilization effects on methane oxidation in a drained peatland soil. Soil Biol. Biochem. 26: 1331–1339.CrossRefGoogle Scholar
  9. Czóbel, Sz., Sz. Fóti, J. Balogh, Z. Nagy, S. Bartha and Z. Tuba. 2005. Chamber series and space-scale analysis of CO2 gas-exchange in grassland vegetation. A novel approach. Photosyn-thetica 43: 267–272.CrossRefGoogle Scholar
  10. Davidson, E.A. 1991. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: J.E. Roger and W.B. Whitman (eds.), Microbial production and consumption of greenhouse gases: Methane, nitrogen oxides and halomethanes. Am. Soc. Microbiol. Washington DC. pp. 219–235.Google Scholar
  11. Del Grosso, S.J., W.J. Parton, A.R. Mosier, D.S. Ojima, D.S. Kumala and S. Phongpan. 2000. General model for N2O and N2 gas emissions from soils due to dentrification. Global Biogeochem. Cycles. 14: 1045–1060.CrossRefGoogle Scholar
  12. Dörr, H., L. Katruff and I. Levin. 1993. Soil texture parameterization of the methane uptake in aerated soils. Chemosphere 26: 697–713.CrossRefGoogle Scholar
  13. Fekete, G. 1992. The holistic view of succession reconsidered. Coenoses 7: 21–29.Google Scholar
  14. Fekete, G., Z. Tuba. and E. Melkó. 1988. Background processes at the population level during succession in grasslands on sand. Vegetatio 77: 33–41.CrossRefGoogle Scholar
  15. Firestone, M. K. and E.A. Davidson. 1989. Microbiological basis of NO and N2O production and consumption in soil. In: M.O. Andrea and D.S. Schimel (eds), Exchange of trace gases between terrestrial ecosystems and the atmosphere, John Wiley & Sons Ltd., Chichester, UK. pp. 7–21.Google Scholar
  16. Flechard, C.R., P. Ambus, U. Skiba, R.M. Rees, A. Hensen, A. van Amstel,A. van den Pol-van Dasselaar, J.-F. Soussana, M.Jones, J. Clifton-Brown, A. Raschi, L. Horvath, A. Neftel, M. Jocher, C. Ammann, J. Leidfield, J. Fuhrer, P.L. Calanca, E. Thalman, K. Pilegaard, C. Di Marco, C. Campbell, E. Nemitz, K.J. Hargreaves, P. Levy, B.C. Ball, S. Jones, W.C.M. van de Bulk, T. Groot, M. Blom, R. Domingues, G. Kasper, V. Allard, E. Ceshia, P. Cellier, P. Laville, C. Henault, F. Bizouard, M. Abdalla, M. Williams, S. Baronti, F. Berretti, and B. Grosz. 2007. Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe. Agricult. Ecosys. and Environ. 121: 135–152.CrossRefGoogle Scholar
  17. FÖMI. 2005. CORINE CLC50 Land Cover Data Base. Institute of Geodesy, Cartography and Remote Sensing, Hungary (FÖMI).Google Scholar
  18. Granli, T. and O.C. Bøckmann. 1994. Nitrous oxide from agriculture. Norw. J. Agric. Sci. 12: 1–128.Google Scholar
  19. Grosz, B. Horváth, L. and Machon, A. 2008. Modelling soil fluxes of nitrogen and carbon gases above a semi arid grasslandin Hungary.Cereal Research Communications 36. Suppl. 5. pp. 1523–1526.Google Scholar
  20. Hidy, D., Z. Barcza, L. Haszpra,G. Churkina and K. Trusilova. 2007. Parameter estimation for grassland carbon cycle using nonlinear inversion of BIOME-BGC. Cereal Res. Commun. 35: 453–456.CrossRefGoogle Scholar
  21. IPCC. 2007. Climate Change 2007. Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Core Writing Team, Pachauri, R.K. and Reisinger, A. (eds.). IPCC, Geneva, Switzerland, 104 pp.Google Scholar
  22. Knowles, R. 2000. Nitrogen cycle. In: J. Lederberg (ed.), Encyclopedia of Microbiology vol. 3, 2nd ed. Academic, San Diego, Calif. pp. 379–391.Google Scholar
  23. Kugler, Sz., L. Horváth andA. Machon. 2008. Estimationofnitrogen flux between the atmosphere and aquatic/terrestrial ecosystems in Hungary. Environmental Pollution 150: 498–503.CrossRefGoogle Scholar
  24. Maróti, I., Z. Tuba, and M. Csík. 1984. Changes of chloroplast ultrastructure and carbohydrate level in Festuca, Achillea and Sedum during drought and recovery. J. Plant Physiol. 116: 1–10.CrossRefGoogle Scholar
  25. Nagy, Z., Sz. Czóbel, J. Balogh, L. Horváth, Sz. Fóti, K. Pintér, T. Weidinger, Zs. Csintalan and Z. Tuba. 2005. Some preliminary results of the Hungarian grassland ecological research: carbon cycling and greenhouse gas balances under changing. Cereal Res. Commun. 33: 279–281.CrossRefGoogle Scholar
  26. Nagy, Z., K. Pintér, Sz. Czóbel, J. Balogh, L. Horváth, Sz. Fóti, T., Z. Barcza, Weidinger, Zs. Csintalan, N.Q. Dinh, B. Grosz and Z. Tuba. 2007. The carbon budget of semi-arid grassland in a wet and dry year in Hungary. Agric. Ecosys. Environ. 121: 21–29.CrossRefGoogle Scholar
  27. van den Pol-van Dasselaar, A., M.L. van Beusichem and O. Onema. 1998. Effects of soil moisture content and temperature on methane uptake by grasslands on sandy soils. Plant Soil 204: 213–222.CrossRefGoogle Scholar
  28. Prather, M., D. Drewent, P. Enhalt, E. Fraser, E. Sanhueza and X. Zhou. 1995. Other trace gases and atmospheric chemistry. In: J. Houghton et al. (eds.), Climate change,1994. Cambridge Univ. Press, Cambridge. pp. 77–126.Google Scholar
  29. Segers, R. 1998. Methane production and methane consumption: a review of process underlying wetland methane fluxes. Biogeochem. 41: 23–51.CrossRefGoogle Scholar
  30. Segers, R. and S.W.M. Kengen.1998. Methane production as a function of anaerobic carbon mineralization: a process model. Soil Biology and Biochem. 30: 1107–1117.CrossRefGoogle Scholar
  31. Simojoki, A. and A. Jaakkola. 2000. Effect of nitrogen fertilization, cropping and irrigation on soil air composition and nitrous oxide emission in a loamy clay. Europ. J. Soil Sci. 51: 413–424.CrossRefGoogle Scholar
  32. Steinkamp, R., K. Butterbach-Bahl and H. Papen. 2001. Methane oxidation by soils of an N limited and N fertilized spruce forest in the Black Forest, Germany. Soil Biol. Biochem. 33: 145–153.CrossRefGoogle Scholar
  33. Szentes, Sz., Á. Kenéz, D. Saláta, M. Szabó and K. Penksza. 2007. Comparative researches and evaluations on grassland management and nature conservation in natural grassland of the Transdanubian mountain range. Cereal Res. Commun. 35: 1161–1164.CrossRefGoogle Scholar
  34. Szerdahelyi, T., Fóti, Sz., Nagy, J., Czóbel, Sz., Balogh, J. and Tuba, Z. 2004. Species composition and CO2 exchange of a temperate loess grassland (Salvio-Festuceum rupicolae) at present-day and expected future air CO2 concentrations. Ekologia (Bratislava), 22.: 137–146.Google Scholar
  35. Tuba, Z. 2005. Ecological Responses and Adaptations of Crops to Rising Atmospheric Carbon Dioxide. Haworth Press Inc., New York, USA. p. 414.Google Scholar
  36. Tuba, Z., K. Szente, Z. Nagy, Zs. Csintalan and J. Koch. 1996. Responses of CO2assimilation, transpiration and water use efficiency to long-term elevated CO2 in perennial C3 xeric loess steppe species. J. Plant Physiol. 148: 356–361.CrossRefGoogle Scholar
  37. Vor, T., J. Dyckmans, N. Loftfield, F. Beese and H. Flessa. 2003. Aeration effects on CO2, N2O, and CH4 emission and leachate composition of a forest soil. J. Plant Nutr. Soil Sci. 166: 39–45.CrossRefGoogle Scholar
  38. Whalen, S.C. and W.S. Reeburgh. 1996. Moisture and temperature sensitivity of CH4 oxidation in boreal soils. Soil Biol. Biochem. 28: 1271–1281.CrossRefGoogle Scholar
  39. Zólyomi, B. and G. Fekete. 1994. The Pannonian loess steppe: Differentiation in space and time. Abstracta Botanica 18: 29–41.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • L. Horváth
    • 1
    Email author
  • B. Grosz
    • 2
  • A. Machon
    • 2
    • 3
  • J. Balogh
    • 3
    • 4
  • K. Pintér
    • 3
  • Sz. Czóbel
    • 3
  1. 1.Hungarian Meteorological ServiceBudapestHungary
  2. 2.Institute of Chemistry, Eötvös Loránd UniversityBudapestHungary
  3. 3.Institute of Botany and Ecophysiology, Faculty of Agriculture and Environmental SciencesSzent István UniversityGödöllőHungary
  4. 4.Plant Ecology Research Group of Hungarian Academy of Sciences at Institute of Botany and Ecophysiology, Faculty of Agriculture and Environmental SciencesSzent István UniversityGödöllöHungary

Personalised recommendations