Two groups of epigeic arthropods differ in colonising of piedmont quarries: the necessity of multi-taxa and life-history traits approaches in the monitoring studies

Abstract

It is increasingly understood that inventorying and monitoring biodiversity requires a multi-taxon approach and that comparing simple indices, such as species richness, should be accompanied by deeper analyses of species community composition and by comparisons of species life-history traits among taxa and habitats. Here, we document that two ecologically rather similar groups of epigeic predators, ground-dwelling spiders (Araneae) and ground beetles (Coleoptera: Carabidae), differ in patterns of stone quarry colonization. Such post-industrial barrens as abandoned quarries are increasingly appreciated as potential refuges for species that are becoming rare in modern landscapes. We compared species richness, community composition and species life-history traits of two epigeic invertebrates groups, in quarries and adjoining seminatural biotopes in a submountain region with granulite and limestone bedrock in SW Czech Republic. For both groups, quarries were species-poorer than seminatural sites, herbaceous biotopes were richer than scrubby and rocky biotopes, and no significant effects on species richness were revealed for substrate. Assemblages colonising quarries differed from those outside of quarries. They contained numerous regionally rarer species of rocks and scree in the case of spiders, but generalists of open landscapes prevailed among ground beetles. A survey limited to ground beetles, as well as to species richness analyses, would fail to detect a conservation potential of the quarries. Hence, a multi-taxa approach should be preferred, and species richness analyses should be assembled by insights onto community composition and species life-history traits in monitoring studies.

Abbreviations

ANOVA:

Analysis of Variance

CCA:

Canonical Correspondence Analysis

DCA:

Detrended Correspondence Analysis.

References

  1. Andersen, J. 2000. What is the origin of the carabid beetle fauna of dry, anthropogenic habitats in western Europe? J. Biogeogr. 27: 795–806.

    Article  Google Scholar 

  2. Andersen, J. and O. Hanssen. 2005. Riparian beetles, a unique, but vulnerable element in the fauna of Fennoscandia. Biodiv. Conserv. 14: 3497–3524.

    Article  Google Scholar 

  3. Balmer, O. and A. Erhardt. 2000. Consequences of succession on extensively grazed grasslands for central European butterfly communities: Rethinking conservation practices. Conserv. Biol. 14: 746–757.

    Article  Google Scholar 

  4. Batáry, P., A. Báldi, G. Szél, A. Podlussany, I. Rozner and S. Erdos. 2007. Responses of grassland specialist and generalist beetles to management and landscape complexity. Divers. Distrib. 13: 196–202.

    Article  Google Scholar 

  5. Bates, A.J., J.P. Sadler, J.N. Perry. and A.P. Fowles. 2007. The microspatial distribution of beetles (Coleoptera) on exposed riverine sediments (ERS). Eur. J. Entomol 104: 479–487.

    Article  Google Scholar 

  6. Baur, B., C. Cremene, G. Groza, L. Rakosy, A.A. Schileyko, A. Baur, P. Stoll and A. Erhardt. 2006. Effects of abandonment of subalpine hay meadows on plant and invertebrate diversity in Transylvania, Romania. Biol. Conserv. 132: 261–273.

    Article  Google Scholar 

  7. Benes, J., P. Kepka and M. Konvicka. 2003. Limestone quarries as refuges for European xerophilous butterflies. Conserv. Biol. 17: 1058–1069.

    Article  Google Scholar 

  8. Brandle, M., W. Durka, H. Krug and R. Brandl. 2003. The assembly of local communities: Plants and birds in non-reclaimed mining sites. Ecography 26: 652–660.

    Article  Google Scholar 

  9. Bried, J.T., B.D. Herman and G.N. Ervin. 2007. Umbrella potential of plants and dragonflies for wetland conservation: a quantitative case study using the umbrella index. J. App. Ecol. 44: 833–842.

    Article  Google Scholar 

  10. Broring, U. and G. Wiegleb. 2005. Soil zoology II: Colonization, distribution, and abundance of terrestrial Heteroptera in open landscapes of former brown coal mining areas. Ecol. Eng. 24: 135–147.

    Article  Google Scholar 

  11. Buchar, J. 1983. Artenklassifikation der Arachnofauna Bohmens als Mittel zur Bioindikation der Umweltqualitat Fauna Bohem. septentr. 8: 119–135.

    Google Scholar 

  12. Buchar, J. and V. Ruzicka. 2002. Catalogue of Spiders of the Czech Republic. Peres press, Prague.

    Google Scholar 

  13. Clarke, K.R. 1993. Nonparametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18: 117–143.

    Article  Google Scholar 

  14. Cremene, C, G. Groza, L. Rakosy, A.A. Schileyko, A. Baur, A. Erhardt and B. Baur. 2005. Alterations of steppe-like grasslands in Eastern Europe: a threat to regional biodiversity hotspots. Conserv. Biol. 19: 1606–1618.

    Article  Google Scholar 

  15. Devictor, V., R. Julliard and F. Jiguet. 2008. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117: 507–514.

    Article  Google Scholar 

  16. Dufrene, M. and P. Legendre. 1997. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67: 345–366.

    Google Scholar 

  17. Edwards, J.S. and I.W.B Thornton. 2001 Colonization of an island volcano, Long Island, Papua New Guinea, and an emergent island, Motmot, in its caldera lake. VI. The pioneer arthropod community of Motmot. J. Biogeogr. 28: 1379–1388.

    Article  Google Scholar 

  18. Fleishman, E., D.D Murphy and P.E Brussard. 2000. A new method for selection of umbrella species for conservation planning. Ecol. Appl. 10: 569–579.

    Article  Google Scholar 

  19. Gotelli, N.J. and R.K. Colwell. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4: 379–391.

    Article  Google Scholar 

  20. Gutierrez, D., R. Menendez and M. Mendez. 2004. Habitat-based conservation priorities for carabid beetles within the Picos de Europa National Park, northern Spain. Biol. Conserv. 115: 379–393

    Article  Google Scholar 

  21. Hammer, O., D.A.T. Harper and P.D. Ryan. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, ttp://palaeo-elec-tronica.org/2001_2001/past/issue2001_2001.htm.

  22. Hodacova, D. and K. Prach. 2003. Spoil heaps from brown coal mining: Technical reclamation versus spontaneous revegetation. Restor. Ecol. 11: 385–391.

    Article  Google Scholar 

  23. Hurka, K. 1996. Carabidae of the Czech and Slovak Republics. Kabourek, Zlin.

    Google Scholar 

  24. Hurka, K., P. Vesely and J. Farkac. 1996. Die Nutzung der Laufkafer (Coleoptera: Carabidae) zur Indikation der Umweltqualitat. Klapalekiana 32: 15–26.

    Google Scholar 

  25. Kadlec, T., J. Benes, V. Jarosik and M. Konvicka. 2008. Revisiting urban refuges: Changes of butterfly and burnet fauna in Prague reserves over three decades. Landsc. Urban Plann. 85: 1–11.

    Article  Google Scholar 

  26. Kati, V., P. Devillers, M. Dufrene, A. Legakis, D. Voko and P. Lebrun. 2004. Testing the value of six taxonomic groups as biodiversity indicators at a local scale. Conserv. Biol. 18: 667–675.

    Article  Google Scholar 

  27. Kotze, D.J. and R.B. O’Hara. 2003. Species decline – but why? Explanations of carabid beetle (Coleoptera, Carabidae) declines in Europe. Oecologia 135: 138–148.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kremen, C. 1992. Assessing the indicator properties of species assemblages for natural areas monitoring. Ecol. Appl. 2: 203–217.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kremen, C., R.K. Colwell, T.L. Erwin, D.D. Murphy, R.F. Noss and M.A. Sanjayan. 1993. Terrestrial arthropod assemblages – their use in conservation planning. Conserv. Biol. 7: 796–808.

    Article  Google Scholar 

  30. Lambeck, R.J. 1997. A multi-species umbrella for nature conservation. Conserv. Biol. 11: 849–856.

    Article  Google Scholar 

  31. Lawton, J.H., D.E. Bignell, B. Bolton,G.F. Bloemers, P. Eggleton, P.M. Hammond, M. Hodda, R.D. Holt, T.B. Larsen, N.A. Mawdsley, N.E. Stork, D.S. Srivastava and A.D. Watt. 1998. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391: 72–76.

    Article  CAS  Google Scholar 

  32. Lepš, J. and P. Šmilauer. 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  33. Lovell, S, M. Hamer, R. Slotow and D. Herbert. 2007. Assessment of congruency across invertebrate taxa and taxonomic levels to identify potential surrogates. Biol. Conserv. 139: 113–125.

    Article  Google Scholar 

  34. Marc, P, A. Canard and F. Ysnel. 1999. Spiders (Araneae) useful for pest limitation and bioindication. Agr. Ecosyst. Environ. 74: 229–273.

    Article  Google Scholar 

  35. McGeoch, M.A. 1998. The selection, testing and application of terrestrial insects as bioindicators. Biol. Rev. 73: 181–201.

    Article  Google Scholar 

  36. Niemela, J and B. Baur. 1998. Threatened species in a vanishing habitat: plants and invertebrates in calcareous grasslands in the Swiss Jura mountains. Biodiv. Conserv. 7: 1407–1416

    Article  Google Scholar 

  37. Novak, J. and M. Konvicka. 2006. Proximity of valuable habitats affects succession patterns in abandoned quarries.Ecol. Eng.26: 113–122.

    Article  Google Scholar 

  38. Owens, I.P.F., P.M. Bennett and P.H. Harvey. 1999. Species richness among birds: body size, life history, sexual selection orecology? Proc. Roy. Soc. Lond. B – Biol. Sci. 266: 933–939.

    Article  Google Scholar 

  39. Pearson, D.L. 1994. Selecting indicator taxa for the quantitative assessment of biodiversity. Phil. Trans. Roy. Soc. Lond. B – Biol. Sci. 345: 75–79.

    Article  CAS  Google Scholar 

  40. Prach, K. and P. Pysek. 2001. Using spontaneous succession for restoration of human-disturbed habitats: Experience from Central Europe. Ecol. Eng. 17: 55–62.

    Article  Google Scholar 

  41. Rainio, J. and J. Niemela. 2003. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodiv. Conserv. 12: 487–506.

    Article  Google Scholar 

  42. Ricketts, T.H., G.C. Daily and P.R. Ehrlich. 2002. Does butterfly diversity predict moth diversity? Testing a popular indicator taxon at local scales. Biol. Conserv. 103: 361–370.

    Article  Google Scholar 

  43. Roberge, J.M. and P. Angelstam. 2004. Usefulness of the umbrella species concept as a conservation tool. Conserv. Biol. 18: 76–85.

    Article  Google Scholar 

  44. Rosenzweig, M.L. 2003. Reconciliation ecology and the future of species diversity. Oryx 37: 194–205.

    Article  Google Scholar 

  45. Roth, T., V. Amrhein, B. Peter and D. Weber. 2008. A Swiss agrienvironment scheme effectively enhances species richness for some taxa over time. Agr. Ecosyst. Environ. 125: 167–172.

    Article  Google Scholar 

  46. Ruzicka, V. 2000. Spiders in rocky habitats in Central Bohemia. J. Arachnology 28: 217–222.

    Article  Google Scholar 

  47. Samways, M.J. 2007. Insect conservation: A synthetic management approach. Ann. Rev. Entomol. 52: 465–487.

    Article  CAS  Google Scholar 

  48. Sauberer, N., K.P. Zulka, M. Abensperg-Traun, H.M. Berg, G. Bieringer, N. Milasowszky, D. Moser, C. Plutzar, M. Pollheimer, C. Storch, R. Trostl, H. Zechmeister and G. Grabherr. 2004. Surrogate taxa for biodiversity in agricultural landscapes of eastern Austria. Biol. Conserv. 117: 181–190.

    Article  Google Scholar 

  49. Schulz, F. and G. Wiegleb. 2000. Development options of natural habitats in a post-mining landscape. Land Degrad. Dev. 11: 99–110.

    Article  Google Scholar 

  50. Simberloff, D. 1998. Flagships, umbrellas, and keystones: Is singlespecies management passe in the landscape era? Biol. Conserv. 83: 247–257.

    Article  Google Scholar 

  51. Skoupy, V. 2004. Ground-beetles (Coleoptera: Carabidae) of the Czech and Slovak Republics of Jan Pulpan’s Collection. Public History, Prague.

    Google Scholar 

  52. Small, E., J.P. Sadler and M. Telfer. 2006. Do landscape factors affect brownfield carabid assemblages? Sci. Total Environ. 360: 205–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Spitzer, L., M. Konvicka, R. Tropek, J. Benes, I.H. Tuf and J. Tufova. 2008. Does closure of traditionally managed open woodlands threaten epigeic invertebrates? Effects of coppicing and high deer densities. Biol. Conserv. 141: 827–837.

    Article  Google Scholar 

  54. StatSoft, Inc. 2001. STATISTICA (data analysis software system), version 6. www.statsoft.com.

  55. ter Braak, C.J.F. and P. Smilauer. 2002. CANOCO reference manual and CanoDraw for Windows user’s guide: Software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, NY.

    Google Scholar 

  56. Thomas, J.A. 1993. Holocene climate changes and warm man-made refugia may explain why a sixth of British butterflies inhabit unnatural early-successional habitats. Ecography 16: 278–284.

    Article  Google Scholar 

  57. Thomas, J.A., M.G. Telfer, D.B. Roy, CD. Preston, J.J.D. Greenwoo, J. Asher, R. Fox, R.T. Clarke and J.H. Lawton. 2004. Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303: 1879–1881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tropek, R. and M. Konvicka. 2008. Can quarries supplement rare xeric habitats in a piedmont region? Spiders of the Blansky les Mts., Czech Republic. Land Degrad. Dev. 19: 104–114.

    Article  Google Scholar 

  59. Vessby, K., B. Soderstrom, A. Glimskarand B.Svensson. 2002. Species-richness correlations of six different taxa in Swedish seminatural grasslands. Conserv. Biol. 16: 430–439.

    Article  Google Scholar 

  60. Weyman, G.S., K.D. Sunderland and P.C. Jepson. 2002. A review of the evolution and mechanisms of ballooning by spiders inhabiting arable farmland. Ethol. Ecol. Evol. 14: 307–326.

    Article  Google Scholar 

  61. Wheater, C.P. and W.R. Cullen. 1997. The flora and invertebrate fauna of abandoned limestone quarries in Derbyshire. Restor. Ecol. 5: 77–84.

    Article  Google Scholar 

  62. Wheater, C.P., W.R. Cullen and J.R. Bell. 2000. Spider communities as tools in monitoring reclaimed limestone quarry landforms. Landscape Ecol. 15: 401–406.

    Article  Google Scholar 

  63. Wiegleb, G. and B. Felinks. 2001. Predictability of early stages of primary succession in post-mining landscapes of Lower Lusatia, Germany. Appl. Veg. Sci. 4: 5–18.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Tropek.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Tropek, R., Spitzer, L. & Konvicka, M. Two groups of epigeic arthropods differ in colonising of piedmont quarries: the necessity of multi-taxa and life-history traits approaches in the monitoring studies. COMMUNITY ECOLOGY 9, 177–184 (2008). https://doi.org/10.1556/ComEc.9.2008.2.6

Download citation

Keywords

  • Araneae
  • Bioindicators
  • Carabidae
  • Monitoring studies
  • Post-industrial habitats

Nomenclature

  • Hurka (1996) for ground beetles
  • Buchar and Ruzicka (2002) for spiders