Advertisement

Community Ecology

, Volume 9, Issue 2, pp 177–184 | Cite as

Two groups of epigeic arthropods differ in colonising of piedmont quarries: the necessity of multi-taxa and life-history traits approaches in the monitoring studies

  • R. TropekEmail author
  • L. Spitzer
  • M. Konvicka
Article

Abstract

It is increasingly understood that inventorying and monitoring biodiversity requires a multi-taxon approach and that comparing simple indices, such as species richness, should be accompanied by deeper analyses of species community composition and by comparisons of species life-history traits among taxa and habitats. Here, we document that two ecologically rather similar groups of epigeic predators, ground-dwelling spiders (Araneae) and ground beetles (Coleoptera: Carabidae), differ in patterns of stone quarry colonization. Such post-industrial barrens as abandoned quarries are increasingly appreciated as potential refuges for species that are becoming rare in modern landscapes. We compared species richness, community composition and species life-history traits of two epigeic invertebrates groups, in quarries and adjoining seminatural biotopes in a submountain region with granulite and limestone bedrock in SW Czech Republic. For both groups, quarries were species-poorer than seminatural sites, herbaceous biotopes were richer than scrubby and rocky biotopes, and no significant effects on species richness were revealed for substrate. Assemblages colonising quarries differed from those outside of quarries. They contained numerous regionally rarer species of rocks and scree in the case of spiders, but generalists of open landscapes prevailed among ground beetles. A survey limited to ground beetles, as well as to species richness analyses, would fail to detect a conservation potential of the quarries. Hence, a multi-taxa approach should be preferred, and species richness analyses should be assembled by insights onto community composition and species life-history traits in monitoring studies.

Keywords

Araneae Bioindicators Carabidae Monitoring studies Post-industrial habitats 

Abbreviations

ANOVA

Analysis of Variance

CCA

Canonical Correspondence Analysis

DCA

Detrended Correspondence Analysis.

Nomenclature

Hurka (1996) for ground beetles Buchar and Ruzicka (2002) for spiders 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, J. 2000. What is the origin of the carabid beetle fauna of dry, anthropogenic habitats in western Europe? J. Biogeogr. 27: 795–806.CrossRefGoogle Scholar
  2. Andersen, J. and O. Hanssen. 2005. Riparian beetles, a unique, but vulnerable element in the fauna of Fennoscandia. Biodiv. Conserv. 14: 3497–3524.CrossRefGoogle Scholar
  3. Balmer, O. and A. Erhardt. 2000. Consequences of succession on extensively grazed grasslands for central European butterfly communities: Rethinking conservation practices. Conserv. Biol. 14: 746–757.CrossRefGoogle Scholar
  4. Batáry, P., A. Báldi, G. Szél, A. Podlussany, I. Rozner and S. Erdos. 2007. Responses of grassland specialist and generalist beetles to management and landscape complexity. Divers. Distrib. 13: 196–202.CrossRefGoogle Scholar
  5. Bates, A.J., J.P. Sadler, J.N. Perry. and A.P. Fowles. 2007. The microspatial distribution of beetles (Coleoptera) on exposed riverine sediments (ERS). Eur. J. Entomol 104: 479–487.CrossRefGoogle Scholar
  6. Baur, B., C. Cremene, G. Groza, L. Rakosy, A.A. Schileyko, A. Baur, P. Stoll and A. Erhardt. 2006. Effects of abandonment of subalpine hay meadows on plant and invertebrate diversity in Transylvania, Romania. Biol. Conserv. 132: 261–273.CrossRefGoogle Scholar
  7. Benes, J., P. Kepka and M. Konvicka. 2003. Limestone quarries as refuges for European xerophilous butterflies. Conserv. Biol. 17: 1058–1069.CrossRefGoogle Scholar
  8. Brandle, M., W. Durka, H. Krug and R. Brandl. 2003. The assembly of local communities: Plants and birds in non-reclaimed mining sites. Ecography 26: 652–660.CrossRefGoogle Scholar
  9. Bried, J.T., B.D. Herman and G.N. Ervin. 2007. Umbrella potential of plants and dragonflies for wetland conservation: a quantitative case study using the umbrella index. J. App. Ecol. 44: 833–842.CrossRefGoogle Scholar
  10. Broring, U. and G. Wiegleb. 2005. Soil zoology II: Colonization, distribution, and abundance of terrestrial Heteroptera in open landscapes of former brown coal mining areas. Ecol. Eng. 24: 135–147.CrossRefGoogle Scholar
  11. Buchar, J. 1983. Artenklassifikation der Arachnofauna Bohmens als Mittel zur Bioindikation der Umweltqualitat Fauna Bohem. septentr. 8: 119–135.Google Scholar
  12. Buchar, J. and V. Ruzicka. 2002. Catalogue of Spiders of the Czech Republic. Peres press, Prague.Google Scholar
  13. Clarke, K.R. 1993. Nonparametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18: 117–143.CrossRefGoogle Scholar
  14. Cremene, C, G. Groza, L. Rakosy, A.A. Schileyko, A. Baur, A. Erhardt and B. Baur. 2005. Alterations of steppe-like grasslands in Eastern Europe: a threat to regional biodiversity hotspots. Conserv. Biol. 19: 1606–1618.CrossRefGoogle Scholar
  15. Devictor, V., R. Julliard and F. Jiguet. 2008. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117: 507–514.CrossRefGoogle Scholar
  16. Dufrene, M. and P. Legendre. 1997. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67: 345–366.Google Scholar
  17. Edwards, J.S. and I.W.B Thornton. 2001 Colonization of an island volcano, Long Island, Papua New Guinea, and an emergent island, Motmot, in its caldera lake. VI. The pioneer arthropod community of Motmot. J. Biogeogr. 28: 1379–1388.CrossRefGoogle Scholar
  18. Fleishman, E., D.D Murphy and P.E Brussard. 2000. A new method for selection of umbrella species for conservation planning. Ecol. Appl. 10: 569–579.CrossRefGoogle Scholar
  19. Gotelli, N.J. and R.K. Colwell. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4: 379–391.CrossRefGoogle Scholar
  20. Gutierrez, D., R. Menendez and M. Mendez. 2004. Habitat-based conservation priorities for carabid beetles within the Picos de Europa National Park, northern Spain. Biol. Conserv. 115: 379–393CrossRefGoogle Scholar
  21. Hammer, O., D.A.T. Harper and P.D. Ryan. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, ttp://palaeo-elec-tronica.org/2001_2001/past/issue2001_2001.htm.Google Scholar
  22. Hodacova, D. and K. Prach. 2003. Spoil heaps from brown coal mining: Technical reclamation versus spontaneous revegetation. Restor. Ecol. 11: 385–391.CrossRefGoogle Scholar
  23. Hurka, K. 1996. Carabidae of the Czech and Slovak Republics. Kabourek, Zlin.Google Scholar
  24. Hurka, K., P. Vesely and J. Farkac. 1996. Die Nutzung der Laufkafer (Coleoptera: Carabidae) zur Indikation der Umweltqualitat. Klapalekiana 32: 15–26.Google Scholar
  25. Kadlec, T., J. Benes, V. Jarosik and M. Konvicka. 2008. Revisiting urban refuges: Changes of butterfly and burnet fauna in Prague reserves over three decades. Landsc. Urban Plann. 85: 1–11.CrossRefGoogle Scholar
  26. Kati, V., P. Devillers, M. Dufrene, A. Legakis, D. Voko and P. Lebrun. 2004. Testing the value of six taxonomic groups as biodiversity indicators at a local scale. Conserv. Biol. 18: 667–675.CrossRefGoogle Scholar
  27. Kotze, D.J. and R.B. O’Hara. 2003. Species decline – but why? Explanations of carabid beetle (Coleoptera, Carabidae) declines in Europe. Oecologia 135: 138–148.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kremen, C. 1992. Assessing the indicator properties of species assemblages for natural areas monitoring. Ecol. Appl. 2: 203–217.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kremen, C., R.K. Colwell, T.L. Erwin, D.D. Murphy, R.F. Noss and M.A. Sanjayan. 1993. Terrestrial arthropod assemblages – their use in conservation planning. Conserv. Biol. 7: 796–808.CrossRefGoogle Scholar
  30. Lambeck, R.J. 1997. A multi-species umbrella for nature conservation. Conserv. Biol. 11: 849–856.CrossRefGoogle Scholar
  31. Lawton, J.H., D.E. Bignell, B. Bolton,G.F. Bloemers, P. Eggleton, P.M. Hammond, M. Hodda, R.D. Holt, T.B. Larsen, N.A. Mawdsley, N.E. Stork, D.S. Srivastava and A.D. Watt. 1998. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391: 72–76.CrossRefGoogle Scholar
  32. Lepš, J. and P. Šmilauer. 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  33. Lovell, S, M. Hamer, R. Slotow and D. Herbert. 2007. Assessment of congruency across invertebrate taxa and taxonomic levels to identify potential surrogates. Biol. Conserv. 139: 113–125.CrossRefGoogle Scholar
  34. Marc, P, A. Canard and F. Ysnel. 1999. Spiders (Araneae) useful for pest limitation and bioindication. Agr. Ecosyst. Environ. 74: 229–273.CrossRefGoogle Scholar
  35. McGeoch, M.A. 1998. The selection, testing and application of terrestrial insects as bioindicators. Biol. Rev. 73: 181–201.CrossRefGoogle Scholar
  36. Niemela, J and B. Baur. 1998. Threatened species in a vanishing habitat: plants and invertebrates in calcareous grasslands in the Swiss Jura mountains. Biodiv. Conserv. 7: 1407–1416CrossRefGoogle Scholar
  37. Novak, J. and M. Konvicka. 2006. Proximity of valuable habitats affects succession patterns in abandoned quarries.Ecol. Eng.26: 113–122.CrossRefGoogle Scholar
  38. Owens, I.P.F., P.M. Bennett and P.H. Harvey. 1999. Species richness among birds: body size, life history, sexual selection orecology? Proc. Roy. Soc. Lond. B – Biol. Sci. 266: 933–939.CrossRefGoogle Scholar
  39. Pearson, D.L. 1994. Selecting indicator taxa for the quantitative assessment of biodiversity. Phil. Trans. Roy. Soc. Lond. B – Biol. Sci. 345: 75–79.CrossRefGoogle Scholar
  40. Prach, K. and P. Pysek. 2001. Using spontaneous succession for restoration of human-disturbed habitats: Experience from Central Europe. Ecol. Eng. 17: 55–62.CrossRefGoogle Scholar
  41. Rainio, J. and J. Niemela. 2003. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodiv. Conserv. 12: 487–506.CrossRefGoogle Scholar
  42. Ricketts, T.H., G.C. Daily and P.R. Ehrlich. 2002. Does butterfly diversity predict moth diversity? Testing a popular indicator taxon at local scales. Biol. Conserv. 103: 361–370.CrossRefGoogle Scholar
  43. Roberge, J.M. and P. Angelstam. 2004. Usefulness of the umbrella species concept as a conservation tool. Conserv. Biol. 18: 76–85.CrossRefGoogle Scholar
  44. Rosenzweig, M.L. 2003. Reconciliation ecology and the future of species diversity. Oryx 37: 194–205.CrossRefGoogle Scholar
  45. Roth, T., V. Amrhein, B. Peter and D. Weber. 2008. A Swiss agrienvironment scheme effectively enhances species richness for some taxa over time. Agr. Ecosyst. Environ. 125: 167–172.CrossRefGoogle Scholar
  46. Ruzicka, V. 2000. Spiders in rocky habitats in Central Bohemia. J. Arachnology 28: 217–222.CrossRefGoogle Scholar
  47. Samways, M.J. 2007. Insect conservation: A synthetic management approach. Ann. Rev. Entomol. 52: 465–487.CrossRefGoogle Scholar
  48. Sauberer, N., K.P. Zulka, M. Abensperg-Traun, H.M. Berg, G. Bieringer, N. Milasowszky, D. Moser, C. Plutzar, M. Pollheimer, C. Storch, R. Trostl, H. Zechmeister and G. Grabherr. 2004. Surrogate taxa for biodiversity in agricultural landscapes of eastern Austria. Biol. Conserv. 117: 181–190.CrossRefGoogle Scholar
  49. Schulz, F. and G. Wiegleb. 2000. Development options of natural habitats in a post-mining landscape. Land Degrad. Dev. 11: 99–110.CrossRefGoogle Scholar
  50. Simberloff, D. 1998. Flagships, umbrellas, and keystones: Is singlespecies management passe in the landscape era? Biol. Conserv. 83: 247–257.CrossRefGoogle Scholar
  51. Skoupy, V. 2004. Ground-beetles (Coleoptera: Carabidae) of the Czech and Slovak Republics of Jan Pulpan’s Collection. Public History, Prague.Google Scholar
  52. Small, E., J.P. Sadler and M. Telfer. 2006. Do landscape factors affect brownfield carabid assemblages? Sci. Total Environ. 360: 205–222.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Spitzer, L., M. Konvicka, R. Tropek, J. Benes, I.H. Tuf and J. Tufova. 2008. Does closure of traditionally managed open woodlands threaten epigeic invertebrates? Effects of coppicing and high deer densities. Biol. Conserv. 141: 827–837.CrossRefGoogle Scholar
  54. StatSoft, Inc. 2001. STATISTICA (data analysis software system), version 6. www.statsoft.com.Google Scholar
  55. ter Braak, C.J.F. and P. Smilauer. 2002. CANOCO reference manual and CanoDraw for Windows user’s guide: Software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, NY.Google Scholar
  56. Thomas, J.A. 1993. Holocene climate changes and warm man-made refugia may explain why a sixth of British butterflies inhabit unnatural early-successional habitats. Ecography 16: 278–284.CrossRefGoogle Scholar
  57. Thomas, J.A., M.G. Telfer, D.B. Roy, CD. Preston, J.J.D. Greenwoo, J. Asher, R. Fox, R.T. Clarke and J.H. Lawton. 2004. Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303: 1879–1881.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tropek, R. and M. Konvicka. 2008. Can quarries supplement rare xeric habitats in a piedmont region? Spiders of the Blansky les Mts., Czech Republic. Land Degrad. Dev. 19: 104–114.CrossRefGoogle Scholar
  59. Vessby, K., B. Soderstrom, A. Glimskarand B.Svensson. 2002. Species-richness correlations of six different taxa in Swedish seminatural grasslands. Conserv. Biol. 16: 430–439.CrossRefGoogle Scholar
  60. Weyman, G.S., K.D. Sunderland and P.C. Jepson. 2002. A review of the evolution and mechanisms of ballooning by spiders inhabiting arable farmland. Ethol. Ecol. Evol. 14: 307–326.CrossRefGoogle Scholar
  61. Wheater, C.P. and W.R. Cullen. 1997. The flora and invertebrate fauna of abandoned limestone quarries in Derbyshire. Restor. Ecol. 5: 77–84.CrossRefGoogle Scholar
  62. Wheater, C.P., W.R. Cullen and J.R. Bell. 2000. Spider communities as tools in monitoring reclaimed limestone quarry landforms. Landscape Ecol. 15: 401–406.CrossRefGoogle Scholar
  63. Wiegleb, G. and B. Felinks. 2001. Predictability of early stages of primary succession in post-mining landscapes of Lower Lusatia, Germany. Appl. Veg. Sci. 4: 5–18.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Zoology, School of Biological SciencesUniversity of South BohemiaCeské BudéjoviceCzech Republic
  2. 2.Department of Ecology and Conservation, Institute of EntomologyCzech Academy of SciencesCeské BudéjoviceCzech Republic
  3. 3.Regional Museum VsetinVsetinCzech Republic

Personalised recommendations