Advertisement

Community Ecology

, Volume 9, Issue 2, pp 169–176 | Cite as

Spectral rarefaction: linking ecological variability and plant species diversity

  • D. RocchiniEmail author
  • T. Wohlgemuth
  • S. Ghisleni
  • A. Chiarucci
Article

Abstract

Species rarefaction curves have long been used for estimating the expected number of species as a function of sampling effort and they represent a powerful tool for quantifying the diversity of an area from local (α-diversity) to regional scale (β- and γ-diversity). Nonetheless, sampling species based on standard plant inventories represents a cost expensive approach. In this view, remotely sensed information may be straightforwardly used for predicting species rich sites. In this paper, we present spectral rarefaction, i.e., the rarefaction of reflectance values derived from satellite imagery, as an effective manner for predicting bio-diverse sites. We tested this approach in ten biogeographical subregions in Switzerland. Plant species data were derived from the Swiss ‘Biodiversity Monitoring’ programme (BDM), which represents species richness of Switzerland at the landscape scale by a systematic sample of 520 quadrats of 1 km X 1 km. Seven Landsat ETM+ images covering the whole study area were acquired. Species and spectral rarefaction were built and results were compared by Pearson correlation coefficient considering several sampling efforts (as measured by the number of sampled quadrats). Local a-diversity showed a similar pattern considering the ten biogeographical subregions while β- and γ-diversity showed higher values for regions in the Alpine arc and lower values for plateau regions and Jura mountains on the strength of the higher ecological (and spectral) variability of the former areas. Meanwhile, positive correlations between species and spectral richness values were significant only after a certain amount of area was accumulated, thus indicating a scale dependence of the fit of satellite and species data. With this paper, we introduce spectral rarefaction as an effective tool in quantifying diversity at a range of spatial scales. Obviously, the achieved results should be viewed as an aid to plan field survey rather than to replace it. We propose to use worldwide available remotely sensed information as a driver for field sampling design strategies.

Keywords

Biodiversity Landsat ETM+ Satellite imagery Species rarefaction Species richness Species turnover Spectral rarefaction Spectral Variation Hypothesis 

Abbreviations

BDM

BioDIversity Monitoring

DN

Digital Number

ETM

Enhanced Thematic Mapper.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baffetta, F., G. Bacaro, L. Fattorini, D. Rocchini and A. Chiarucci. 2007. Multi-stage cluster sampling for estimating average species richness at different spatial grains.Community Ecol. 8: 119–127.CrossRefGoogle Scholar
  2. BFS (1992/1997) Arealstatistik. Bundesamt für Statistik, Servicestelle GEOSTAT, Neuchâtel, Switzerland.Google Scholar
  3. Chavez, P.S. Jr. 1988. An improved dark object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment 24: 459–479.CrossRefGoogle Scholar
  4. Chavez, P.S. Jr. 1996. Image based calibration revisited and improved. Photogrammetric Engineering & Remote Sensing 62: 1025–1036.Google Scholar
  5. Chiarucci, A., G. Bacaro, D. Rocchini and L. Fattorini. 2008. Discovering and rediscovering the sample-based rarefaction formula in the ecological literature. Community Ecol. 9: 121–123.CrossRefGoogle Scholar
  6. Chiarucci, A. and I. Bonini. 2005. Quantitative floristics as a tool for the assessment of plant diversity in Tuscan forests. Forest Ecol. Manage. 212: 160–170.CrossRefGoogle Scholar
  7. Chiarucci, A., N.J. Enright, G.L.W. Perry, B.P. Miller and B.B. Lamont. 2003. Performance of nonparametric species richness estimators in a high diversity plant community. Diversity and Distributions 9: 283–295.CrossRefGoogle Scholar
  8. Chiarucci, A., S. Maccherini and V. De Dominicis. 2001. Evaluation and monitoring of the flora in a nature reserve by estimation methods. Biol. Conserv. 101: 305–314.CrossRefGoogle Scholar
  9. Crist, T.O. and J.A. Veech. 2006. Additive partitioning of rarefaction curves and species-area relationships: unifying alpha-, beta- and gamma-diversity with sample size and habitat area. Ecol. Lett. 9: 923–932.CrossRefPubMedPubMedCentralGoogle Scholar
  10. D’Alessandro, L. and L. Fattorini. 2002. Resampling estimators of species richness from presence-absence data: why they don’t work. Metron 61: 5–19.Google Scholar
  11. Fairbanks, D.H.K. and K.C. McGwire. 2004. Patterns of floristic richness in vegetation communities of California: regional scale analysis with multi-temporal NDVI. Global Ecol. Biogeogr. 13: 221–235.CrossRefGoogle Scholar
  12. Ferretti, M. and A. Chiarucci. 2003. Design concepts adopted in long-term forest monitoring programs in Europg: problems for the future? The Science of the Total Environment 310: 171–178.CrossRefGoogle Scholar
  13. Fisher, P. 1997. The pixel: a snare and a delusion. International J. Remote Sensing 18: 679–685CrossRefGoogle Scholar
  14. Foody, G.M. 1996. Fuzzy modelling of vegetation from remotely sensed imagery. Ecol. Model. 85: 3–12.CrossRefGoogle Scholar
  15. Foody, G.M. and M.E.J. Cutler. 2003. Tree biodiversity in protected and logged Bornean tropical rain forests and its measurement by satellite remote sensing. J. Biogeogr. 30: 1053–1066.CrossRefGoogle Scholar
  16. Foody, G.M. and M.E.J. Cutler. 2006. Mapping the species richness and composition of tropical forests from remotely sensed data with neural networks. Ecol. Model. 195: 37–42.CrossRefGoogle Scholar
  17. Fox, J.,M. Ash, T. Boye, S.Calza,A. Chang, P. Grosjean, R. Heiberger, G.J. Kerns, R. Lancelot, M. Lesnoff, S. Messad, M. Maechler, D. Putler, M. Ristic, and P. Wolf. 2007. Rcmdr: R Commander. R package version 1.2-9. http://www.r-pro-ject.org, http://socserv.socsci.mcmaster.ca/jfox/Misc/Rcmdr/.Google Scholar
  18. Gaston, K.J. 2000. Global patterns in biodiversity. Nature 405: 220–227.PubMedPubMedCentralGoogle Scholar
  19. Gering, J.C., T.O. Crist and J.A. Veech. 2003. Additive partitioning of species diversity across multiple spatial scales: implications for regional conservation of biodiversity. Conserv. Biol. 17: 488–499.CrossRefGoogle Scholar
  20. Gillespie, T.W., G.M. Foody, D. Rocchini, A.P. Giorgi and S. Saatchi. 2008. Measuring and modeling biodiversity from space. Progress in Physical Geography , in press.Google Scholar
  21. Gillison, A.N. and K.R.W. Brewer. 1985. The use of gradient directed transects or gradsects in natural resource surveys. J. Environmental Manage. 20: 103–127.Google Scholar
  22. Gonseth, Y., T. Wohlgemuth, B. Sansonnens and A. Buttler. 2001. Die Biogeographischen Regionen der Schweiz. Erläuterungen und Einteilungsstandard / Les régions biogéographiques de la Suisse. Explications et division standard. Umwelt Materialien / Cahiers de l’environment 137: 47 S.Google Scholar
  23. Gotelli, N.J. and R.K. Colwell. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4: 379–391.Google Scholar
  24. Gould, W. 2000. Remote Sensing of vegetation, plant species richness, and regional biodiversity hot spots. Ecol. App. 10: 1861–1870.CrossRefGoogle Scholar
  25. Hintermann, U., D. Weber and A. Zangger. 2000. Biodiversity monitoring in Switzerland. Schriftenreihe für Landschaftspflege und Naturschutz 62: 47–58.Google Scholar
  26. Kalkhan, M.A., E.J. Stafford and T.J. Stohlgren. 2007. Rapid plant diversity assessment using a pixel nested plot design: A case study in Beaver Meadows, Rocky Mountain National Park, Colorado, USA. Diversity and Distributions 13: 379–388.CrossRefGoogle Scholar
  27. Kirby, K.J. and R.C. Thomas. 2000. Changes in the ground flora in Wytham Woods, southern England from 1974 to 1991 – implications for nature conservation. J. Veg. Sci. 11: 871–880.CrossRefGoogle Scholar
  28. Kobayashi, S. 1974. The species-area relation I. A model for discrete sampling. Res. Popul. Ecol. 15: 223–237.CrossRefGoogle Scholar
  29. Koellner, T., A.M. Hersperger and T. Wohlgemuth. 2004. Rarefaction method for assessing plant species diversity on a regional scale. Ecography 27: 532–544.CrossRefGoogle Scholar
  30. Kumar, S., T.J. Stohlgren and G.W. Chong. 2006. Spatial heterogeneity influences native and nonnative plant species richness. Ecology 87: 3186–3199.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lande, R. 1996. Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76: 5–13.CrossRefGoogle Scholar
  32. Le Hégarat-Mascle, S., D. Vidal-Madjar, O. Taconet and M. Zribi. 1997. Application of Shannon information theory to a comparison between L- and C-band SIR-C polarimetric data versus incidence angle. Remote Sensing of Environment 60: 121–130.CrossRefGoogle Scholar
  33. Magurran, E.M. 1983. Ecological Diversity and its Measurement. Chapman and Hall, London.Google Scholar
  34. McCollin, D., L. Moore and T. Sparks. 2000. The flora of a cultural landscape: environmental determinantsof change using archival sources. Biol. Conserv. 92: 249–263.CrossRefGoogle Scholar
  35. Moreno, C.E. and G. Halffter. 2001. On the measure of sampling effort used in species accumulation curves. J. App. Ecol. 38: 487–490.CrossRefGoogle Scholar
  36. Nichol, J. and M.S. Wong. 2007. Remote sensing of urban vegetation life form by spectral mixture analysis of high-resolution IKONOS satellite images. International Journal of Remote Sensing 28: 985–1000.CrossRefGoogle Scholar
  37. Oindo, B.O. and A.K. Skidmore. 2002. Interannual variability of NDVI and species richness in Kenya. International Journal of Remote Sensing 23: 285–298.CrossRefGoogle Scholar
  38. Okeke, F. and A. Karnieli. 2006. Methods for fuzzy classification and accuracy assessment of historical aerial photographs for vegetation change analyses. Part I: Algorithm development. International Journal of Remote Sensing 27: 153–176.CrossRefGoogle Scholar
  39. Oksanen, J., R. Kindt, P. Legendre and R.B. O’Hara. 2007. Vegan: Community Ecology Package version 1.8–6. http://cran.r-pro-ject.org/.Google Scholar
  40. Palmer, M.W. 1995. How should one count species? Natural Areas Journal 15: 124–135.Google Scholar
  41. Palmer, M.W., P. Earls, B.W. Hoagland, P.S. White and T. Wohlgemuth. 2002. Quantitative tools for perfecting species lists. Environmetrics 13: 121–137.CrossRefGoogle Scholar
  42. Pelissier, R. and P. Couteron. 2007. An operational, additive framework for species diversity partitioning and beta-diversity analysis. J. Ecol. 95: 294–300.CrossRefGoogle Scholar
  43. Plattner, M., S. Birrer and D. Weber. 2004. Data quality in monitoring plant species richness in Switzerland. Community Ecol. 5: 135–143.CrossRefGoogle Scholar
  44. Ricotta, C. 2005. Additive partitioning of Rao’s quadratic diversity: a hierarchical approach. Ecol. Model. 183: 365–371.CrossRefGoogle Scholar
  45. Robinson, G.R., M.E. Yurlina and S.N. Handel. 1994. A century of change in the Staten island flora: ecological correlates of species losses and invasions. Bull. Torrey Bot. Club 121: 119–129.CrossRefGoogle Scholar
  46. Rocchini, D. 2007a. Distance decay in spectral space in analysing ecosystem β-diversity. International Journal of Remote Sensing 28: 2635–2644.CrossRefGoogle Scholar
  47. Rocchini, D. 2007b. Effects of spatial and spectral resolution in estimating ecosystem α-diversity by satellite imagery. Remote Sensing of Environment 111: 423–434.CrossRefGoogle Scholar
  48. Rocchini, D., S. Andreini Butini and A. Chiarucci. 2005. Maximizing plant species inventory efficiency by means of remotely sensed spectral distances. Global Ecol. Biogeogr. 14: 431–437.CrossRefGoogle Scholar
  49. Rocchini, D. and B. Cade. in press. Quantile regression applied to spectral distance decay. IEEE Geoscience and Remote Sensing Letters. doi: 10.1109/LGRS.2008.2001767.Google Scholar
  50. Rocchini, D., A. Chiarucci and S.A. Loiselle. 2004. Testing the spectral variation hypothesis by using satellite multispectral images. Acta Oecol. 26: 117–120.CrossRefGoogle Scholar
  51. Rocchini, D. and C. Ricotta. 2007. Are landscapesas crisp as we may think? Ecol. Model. 204: 535–539.CrossRefGoogle Scholar
  52. Rodrigues, A.S.L., S.J. Andelman, M.I. Bakarr, L. Boitani, T.M. Brooks, R.M. Cowling, L.D.C. Fishpool, G.A.B. da Fonseca, K.J. Gaston, M. Hoffmann, J.S. Long, P.A. Marquet, J.D. Pilgrim, R.L. Pressey, J. Schipper, W. Sechrest, S.N. Stuart, L.G. Underhill, R.W. Waller, M.E.J. Watts and X. Yan. 2004. Effectiveness of the global protected area network in representing species diversity. Nature 428: 640–643.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Schwarz, M. and N.E. Zimmermann. 2005. A new GLM-based method for mapping tree cover continuous fields using regional MODIS reflectance data. Remote Sensing of Environment 95: 428–443.CrossRefGoogle Scholar
  54. Shanmugam, P., Y.H. Ahn and S. Sanjeevi. 2006. A comparison of the classification of wetland characteristics by linear spectral mixture modelling and traditional hard classifiers on multispectral remotely sensed imagery in southern India. Ecol. Model. 194: 379–394.CrossRefGoogle Scholar
  55. Small, C. 2004. The Landsat ETM+ spectral mixing space. Remote Sensing of Environment 93: 1–17.CrossRefGoogle Scholar
  56. Small, C. 2005. A global analysis of urban reflectance. International Journal of Remote Sensing 26: 661–681.CrossRefGoogle Scholar
  57. Stohlgren, T.J. 2007. Measuring Plant Diversity: Lessons from the Field. Oxford University Press, New York, USA.Google Scholar
  58. Stohlgren, T.J., G.W. Chong, M.A. Kalkhan and L.D. Schell. 1997a. Multiscale sampling of plant diversity: effects of minimum mapping unit size. Ecol. App. 7: 1064–1074.CrossRefGoogle Scholar
  59. Stohlgren, T.J., M.B. Coughenour, G.W. Chong, D. Binkley, M.A. Kalkhan, L.D. Schell, D.J. Buckley and J.K. Berry. 1997b. Landscape analysis of plant diversity. Landsc. Ecol. 12: 155–170.CrossRefGoogle Scholar
  60. Stoms, D.M. and J.E. Estes. 1993. A remote sensing research agenda for mapping and monitoring biodiversity. International Journal of Remote Sensing 14: 1839–1860.CrossRefGoogle Scholar
  61. Tang, X.M., W. Kainz and Y. Fang. 2005. Reasoning about changes of land covers with fuzzy settings. International Journal of Remote Sensing 26: 3025–3046.CrossRefGoogle Scholar
  62. Townshend, J.R.G., C. Huang, S.N.V. Kalluri, R.S. Defries, S. Liang and K. Yang. 2004. Beware of per-pixel characterization of land cover. International Journal of Remote Sensing 21: 839–843.CrossRefGoogle Scholar
  63. Tuomisto, H., A.D. Poulsen, K. Ruokolainen, R.C. Moran, C. Quintana, J. Celi and G. Cañas. 2003. Linking floristic patterns with soil heterogeneity and satellite imagery in Ecuadorian Amazonia. Ecol. App. 13: 352–371.CrossRefGoogle Scholar
  64. Veech, J.A. and T.O. Crist. 2007. Habitat and climate heterogeneity maintain beta-diversity of birds among landscapes within ecoregions. Global Ecol. Biogeogr. 16: 650–656.CrossRefGoogle Scholar
  65. Wagner, H.H., O. Wildi and K.C. Ewald. 2000. Additive partitioning of plant species diversity in an agricultural mosaic landscape. Landsc. Ecol. 15: 219–227.CrossRefGoogle Scholar
  66. Waser, L.T., S. Stofer, M. Schwarz , M. Küchler, E. Ivits and C.H. Scheidegger . 2004. Prediction of biodiversity: regression of lichen species richness on remote sensing data. Community Ecol. 5: 121–134.CrossRefGoogle Scholar
  67. Wohlgemuth, T. 1993. The distribution atlas of pteridophytes and phanerograms of Switzerland (Welten and Sutter 1982) in a relational database - species number per mapping unit and its dependence on various factors. Bot. Helv. 103: 55–71.Google Scholar
  68. Wohlgemuth, T. 1998. Modelling floristic species richness on a regional scale: A case study in Switzerland. Biodiversity and Conservation 7: 159–177.CrossRefGoogle Scholar
  69. Wohlgemuth, T., M. Nobis, F. Kienast and M. Plattner. 2008. Modelling vascular plant diversity at the landscape scale using systematic samples. J. Biogeogr. 35: 1226–1240.CrossRefGoogle Scholar
  70. Woodcock, C.E. and S. Gopal. 2000. Fuzzy set theory and thematic maps: accuracy assessment and area estimation. International Journal of Geographical Information Science 14: 153–172.CrossRefGoogle Scholar
  71. Wu, J., D.E. Jelinski, M. Luck and P.T. Tueller. 2000. Multiscale analysis of landscape heterogeneity: scale variance and pattern metrics. Geographic Information Sciences 6: 6–19.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • D. Rocchini
    • 1
    • 2
    Email author
  • T. Wohlgemuth
    • 3
  • S. Ghisleni
    • 1
  • A. Chiarucci
    • 1
    • 2
  1. 1.Dipartimento di Scienze Ambientali “G. Sarfatti”Università di SienaSienaItaly
  2. 2.TerraData environmetrics, Dipartimento di Scienze Ambientali “G. Sarfatti”Università di SienaSienaItaly
  3. 3.WSL Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland

Personalised recommendations