Advertisement

Community Ecology

, Volume 9, Issue 1, pp 29–37 | Cite as

Experimental warming does not enhance soil respiration in a semiarid temperate forest-steppe ecosystem

  • E. Lellei-KovácsEmail author
  • E. Kovács-Láng
  • T. Kalapos
  • Z. Botta-Dukát
  • S. Barabás
  • C. Beier
Open Access
Article

Abstract

The influence of simulated climate change on soil respiration was studied in a field experiment on 4 m × 5 m plots in the semiarid temperate Pannonian sand forest-steppe. This ecosystem type has low productivity and soil organic matter content, and covers large areas, yet data on soil carbon fluxes are still limited. Soil respiration rate – measured monthly between April and November from 2003 to 2006 – remained very low (0.09 – 1.53 μmol CO2 m−2 s−1) in accordance with the moderate biological activity and low humus content of the nutrient poor, coarse sandy soil. Specific soil respiration rate (calculated for unit soil organic matter content), however, was relatively high (0.36 – 7.92 μmol CO2 g−1 Corg h−1) suggesting substrate limitation for soil biological activity. During the day, soil respiration rate was significantly lower at dawn than at midday, while seasonally clear temperature limitation in winter and water limitation in summer were detected. Between years, annual precipitation appeared to be important in determining soil carbon efflux intensity. Nocturnal warming increased soil temperature in 1 cm depth at dawn by 1.6°C on the average, and decreased topsoil (0–11 cm) moisture content by 0.45 vol%. Drought treatment decreased soil moisture content by an average of 0.81 vol%. Soil respiration rate tended to decrease by 7–15% and 13–15% in response to heat and drought treatment, respectively, although the changes were not statistically significant. Nocturnal warming usually prevented dew formation, and that probably also influenced soil respiration. Based on these results, we expect a reduction in the volume and rate of organic matter turnover in this ecosystem in response to the anticipated climate change in the region.

Keywords

Drought treatment Heat treatment Plot-scale climate change experiment Soil CO2 efflux Substrate limitation 

Abbreviations

ANOVA

Analysis of Variance

LAI

Leaf Area Index

Nomenclature

Borhidi and Sántha (1999) for plant communities 

References

  1. Agam, N. and P.R. Berliner. 2006. Dew formation and water vapour adsorption in semi-arid environments - A review. J. Arid Environ. 65: 572–590.CrossRefGoogle Scholar
  2. Beier, C., B. Emmett, P. Gundersen, A. Tietema, J. Peñuelas, M. Estiarte, C. Gordon, A. Gorissen, L. Llorens, F. Roda and D. Williams. 2004. Novel approaches to study climate change effects on terrestrial ecosystems in the field: drought and passive nighttime warming. Ecosystems 7:583–597.CrossRefGoogle Scholar
  3. Beier, C. 2004. Climate change and ecosystem function – full-scale manipulations of CO2 and temperature. New Phytol. 162: 243–251.CrossRefGoogle Scholar
  4. Borhidi, A. and A. Sánta. (eds.) 1999. Vörös Könyv Magyarország Növénytársulásairól 1–2. (The Red Book of the plant communities in Hungary.) Természetbúvár Alapítvány Kiadó, Budapest.Google Scholar
  5. Cramer, W., A. Bondeau, F.I. Woodward, I.C. Prentice, R.A. Betts, V. Brovkin, P.M. Cox, V. Fisher, J.A. Foley, A.D. Friend, C. Kucharik, M.R. Lomas, N. Ramankutty, S. Sitch, B. Smith, A. White and C. Young-Molling. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology 7: 357–373.CrossRefGoogle Scholar
  6. Davidson, E.A., E. Belk and R.D. Boone. 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate hardwood forest. Global Change Biology 4: 217–227.CrossRefGoogle Scholar
  7. Dunne, J.A., S.R. Saleska, M.L. Fischer and J. Harte. 2004. Integrating experimental and gradient methods in ecological climate change research. Ecology 85: 904–916.CrossRefGoogle Scholar
  8. Emmett, B., C. Beier, M. Estiarte, A. Tietema, H.L. Kristensen, D. Williams, J. Peñuelas, I. Schmidt and A. Sowerby. 2004. The response of soil processes to climate change: Results from manipulation studies of shrublands across an environmental gradient. Ecosystems 7: 625–637.CrossRefGoogle Scholar
  9. Flanagan, L.B., L.A. Wever and P.J. Carlson. 2002. Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Global Change Biology 8: 599–615.CrossRefGoogle Scholar
  10. Frank, A.B., M.A. Liebig and J.D. Hanson. 2002. Soil carbon dioxide fluxes in northern semiarid grasslands. Soil Biol. Biochem. 34: 1235–1241.CrossRefGoogle Scholar
  11. Gosz, J.R. and P.J.H. Sharpe. 1989. Broad-scale concepts for interactions for climate, topography and biota at biome transitions. Landscape Ecol. 3: 229–243.CrossRefGoogle Scholar
  12. Grant, R.F., W.C. Oechel, and C. Ping. 2003. Modelling carbon balances of coastal arctic tundra under changing climate. Global Change Biology 9: 16–36.CrossRefGoogle Scholar
  13. Harper, C.W., J.M. Blair, P.A. Fay, A.K. Knapp and J.D. Carlisle. 2005. Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem. Global Change Biology 11: 322–334.CrossRefGoogle Scholar
  14. IPCC 2001. Climate Change 2001: Synthesis Report. A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Integovernmental Panel on Climate Change [Watson, R.T. and the Core Writing Team (eds.)]. Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA, 398 pp.Google Scholar
  15. Kertész, M. 1991. Soil moisture regime of the sandy desert steppe (Bugac, Hungary). In: Dynamics of primary production and soil processes in grassland ecosystems. Simon, T. and Kefeli, V.I. (eds). (In Russian) Publ.: Institute of Soil Sci. and Photosynthesis, Acad. Sci., USSR. pp. 149–157Google Scholar
  16. Kirschbaum, M.U.F. 2004. Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Global Change Biology 10:1870–1877.CrossRefGoogle Scholar
  17. Kovács-Láng, E. 1974. Examination of dynamics of organic matter in a perennial open sandy steppe-meadow (Festucetum vaginatae danubiale) at the Csévharaszt IBP sample area (Hungary). Acta Bot. Acad. Sci. Hung. 20: 309–326.Google Scholar
  18. Kovács-Láng, E., Gy. Kröel-Dulay, M. Kertész, G. Fekete, J. Mika, T. Rédei, K. Rajkai, I. Hahn and S. Bartha. 2000. Changes in the composition of sand grasslands along a climatic gradient in Hungary and implications for climate change. Phytocoenologia 30: 385–407.CrossRefGoogle Scholar
  19. Luo, Y., S. Wan, D. Hui and L.L. Wallace. 2001. Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413: 622–624.CrossRefGoogle Scholar
  20. McCulley, R.L., S.R. Archer, T.W. Boutton, F.M. Hons and D.A. Zuberer. 2004. Soil respiration and nutrient cycling in wooded communities developing in grassland. Ecology 85: 2804–2817.CrossRefGoogle Scholar
  21. Mielnick, P.C. and W.A. Dugas. 2000. Soil CO2 flux in a tallgrass prairie. Soil Biol. Biochem. 32: 221–228.CrossRefGoogle Scholar
  22. Mika, J. 2003. Regionális éghajlati forgatókönyvek: tények és két-ségek. (Regional climatic scenarios: facts and doubts.) In: Csete L. (ed.): “Agro-21” Füzetek 32: 11–24.Google Scholar
  23. Molnár, K. and J. Mika. 1997. Climate as a changing component of landscape: recent evidence and projections for Hungary. Zeitschrift für Geomorphologie N.F. 110: 185–195.Google Scholar
  24. Murthy, R., K.L. Griffin, S.J. Zarnoch, P.M. Dougherty, B. Watson, J.V. Haren, R.L. Patterson and T. Mahato. 2003. Carbon dioxide efflux from a 550 m2 soil across a range of soil temperatures. Forest Ecol. Manage. 178: 311–327.CrossRefGoogle Scholar
  25. Parton, W.J., M. Hartman, D. Ojima and D.S. Schimel. 1998. DAY-CENT and its land surface submodel: Description and testing. Global Planet. Change 19: 35–48.CrossRefGoogle Scholar
  26. Raich, J.W. and W.H. Schlesinger. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus Series B 44: 81–99.CrossRefGoogle Scholar
  27. Raich, J.W. and A. Tufekcioglu. 2000. Vegetation and soil respiration: correlations and controls. Biogeochemistry 48: 71–90.CrossRefGoogle Scholar
  28. Reichstein, M., A. Rey, A. Freibauer, J. Tenhunen, R. Valentini, J. Banza, P. Casals, Y. Cheng, J.M. Grünzweig, J. Irvine, R. Joffre, B.E. Law, D. Loustau, F. Miglietta, W. Oechel, J.M. Ourcival, J.S. Pereira, A. Peressotti, F. Ponti, Y. Qi, S. Rambal, M. Rayment, J. Romanya, F. Rossi, V. Tedeschi, G. Tirone, M. Xu and D. Yakir. 2003. Modelling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochem. Cycles 17: 1104.CrossRefGoogle Scholar
  29. Risser, P.G. 1995. The status of the science examining ecotones. BioScience 45: 318–325.CrossRefGoogle Scholar
  30. Rustad, L.E., J.L. Campbell, G.M. Marion, R.J. Norby, M.J. Mitchell, A.E. Hartley, J.H.C. Cornelissen, J. Gurevitch and GCTE NEWS. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126: 543–562.CrossRefGoogle Scholar
  31. Sabine, C.L., M. Heimann, P. Artaxo, D.C.E. Bakker, C-T.A. Chen, C.B. Field, N. Gruber, C.L. Quéré, R.G. Prinn, J.E. Richey,P.R. Lankao, J.A. Sathaye and R. Valentini. 2004. Current status and past trends of the global carbon cycle. In: Field, C.B., Raupach, M.R. (eds.), The Global Carbon Cycle. SCOPE, Island Press, Washington. pp. 17–44.Google Scholar
  32. Saleska, S.R., J. Harte and M.S. Torn. 1999. The effect of experimental ecosystem warming on CO2 fluxes in a montane meadow. Global Change Biology 5: 125–141.CrossRefGoogle Scholar
  33. Sokal,R.R. and F.J. Rohlf. 1981. Biometry. The Principles and Practice of Statistics in Biological Research. 2nd ed. Freeman, New York.Google Scholar
  34. Sponseller, R.A. 2007. Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem. Global Change Biology 13: 426–436.CrossRefGoogle Scholar
  35. StatSoft, Inc. 2001. STATISTICA (data analysis software system), version 6. www.statsoft.com.
  36. Szász, G. 1967. Kondenzációs folyamatok megfigyelése és mérése homoktalajban. (Observation and determination of condensation processes in sand soil.) Agrokémia és Talajtan 16: 663–668.Google Scholar
  37. Szász, G. 1972. A talajfelszin közelében képződő csapadékmennyiség meghatározása. (Determination of the amount of precipitation forming close to the soil surface.) Időjárás 76:208–222.Google Scholar
  38. Szili-Kovács, T., T. Tóth, M. Halassy, K. Török. 2000. Homok-pusztagyepek természetvédelmi restaurációja a talaj-nitrogén immobilizációjával. (Restoration of sandy grasslands through the immobilization of soil nitrogen.) Agrokémia és Talajtan 49:491–504.Google Scholar
  39. Szili-Kovács, T. and K. Török. 2005. Szénforráskezelés hatása a talaj mikrobiális aktivitására és biomasszájára felhagyott homoki szántókon. (Effect of carbon addition on the soil microbial activity and biomass on abandoned sandy fields.). Agrokémia és Talajtan 54:149–162.CrossRefGoogle Scholar
  40. Thornley, J.H.M. and M.G.R. Cannell. 1997. Temperate grassland responses to climate change: an analysis using the Hurley Pasture Model. Ann. Bot. 80: 205–221.CrossRefGoogle Scholar
  41. Tingley, D.T., E.H. Lee, R. Waschmann, M.G. Johnson and P.T. Rygiewicz. 2006. Does soil CO2 efflux acclimatize to elevated temperature and CO2 during long-term treatment of Douglas-fir seedlings? New Phytol. 170:107–118.CrossRefGoogle Scholar
  42. Verseghy, K., E. Kovács-Láng and K. Mázsa. 1987. Diurnal and seasonal changes of thallus water content of xerothermic lichens. Lichen Physiol. Biochem. 2: 31–44.Google Scholar
  43. Whittaker, R.H. 1975. Communities and Ecosystems. 2nd ed. Macmillan, London.Google Scholar
  44. Wildung, R.E., T.R. Garland and R.L. Buschbom. 1975. The interdependent effects of soil temperature and moisture content on soil respiration rate and plant root decomposition in arid grassland soils. Soil Biol. Biochem. 7: 373–378.CrossRefGoogle Scholar
  45. Wilson, J.M. and D.M. Griffin. 1975. Water potential and the respiration of microorganisms in the soil. Soil Biol. Biochem. 7: 199–204.CrossRefGoogle Scholar
  46. Xu, M. and Y. Qi. 2001. Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan forest. Global Biogeochemical Cycles 15: 687–696.CrossRefGoogle Scholar
  47. Zhou,X.,R.A. Sherry, Y. An,L.L. Wallace and Y. Luo. 2006. Main and interactive effects of warming, clipping, and doubled precipitation on soil CO2 efflux in a grassland ecosystem. Global Biogeochemical Cycles 20: GB1003 (1–12).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • E. Lellei-Kovács
    • 1
    Email author
  • E. Kovács-Láng
    • 1
  • T. Kalapos
    • 2
  • Z. Botta-Dukát
    • 1
  • S. Barabás
    • 1
  • C. Beier
    • 3
  1. 1.Institute of Ecology and BotanyHungarian Academy of SciencesVácrátótHungary
  2. 2.Department of Plant Taxonomy and Ecology, Institute of BiologyEötvös Loránd UniversityBudapestHungary
  3. 3.RISO National LaboratoryRoskildeDenmark

Personalised recommendations