Community Ecology

, Volume 9, Issue 1, pp 17–27 | Cite as

Positive relationship between plant palatability and litter decomposition in meadow plants

  • K. Pálková
  • J. LepšEmail author


Physical supporting or defense structures of plants, which decrease palatability, remain in plant tissue after a plant’s death and so decrease detritus decomposition rates. Consequently, palatability and detritus decomposition rate are expected to be positively correlated. Carbon is the main component of these restricting structures, whereas nitrogen is expected to increase plant attractiveness for herbivores. In this study, we tried to confirm the expected positive relationship between palatability and detritus decomposition rate and to find the species functional traits that are responsible for this concordant response. Some traits are shared by species as a consequence of their common phylogenetic history; consequently, we also studied the effect of phylogenetic correction on the expected relationships.

We assessed the palatability of meadow plant species to a generalist slug Arion lusitanicus in an aquarium grazing experiment and detritus decomposition rate in a field litter-bag test. The two characteristics are positively correlated and the relationship is strengthened by phylogenetic correction. The relationship was strongest for the decomposition rates during the first three months of exposition, but weakened when the exposition period was from six months to a year. Palatability was negatively affected by plant carbon content, but no relationship was found between plant palatability and nitrogen content. Similarly, only the relationship of litter decomposition with litter carbon content was significant. The regression tree method was used to detect the influence of species traits on species palatability and detritus decomposition rate. In general, leaf dry matter content, litter carbon content and seed weight were chosen as the best predictors of plant palatability response. Results for the detritus decomposition rate response mainly reflect supporting or defensive structure contents. Litter carbon content, seed weight and plant height are the most apparent common predictors of these variable responses.

In general, our study confirmed the positive relationship between plant palatability and detritus decomposition. Both plant tissue grazing and detritus decomposition are slowed down by plant tissue supportive structures, manifested as high dry matter content or high tissue carbon content.


Carbon Detritus decomposition rate Grazing Herbivory Nitrogen Slugs Species traits 



Leaf Dry Matter Content


Phylogenetically Independent Contrasts


Nomenclature for plants follows Kubát et al. (2002) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerly, D. D. 2000. Taxon sampling, correlated evolution, and independent contrasts. Evolution 54: 1480–1492.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Breiman, L., J. H. Friedman, R. Olshen, and C. J. Stone. 1984. Classification and Regression Trees. Chapman & Hall, New York.Google Scholar
  3. Bremer, B., K. Bremer, N. Heidari, P. Erixon, R. G. Olmstead, A. A. Anderberg, M. Källersjö and E. Barkhordarian. 2002. Phylogenetics of asterids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels. Mol. Phyl. Evol. 24: 274–301.CrossRefGoogle Scholar
  4. Bryant, J. P., F. D. Provenza, J. Pastor, P. B. Reichardt,T. P. Clausen and J. T. du Toit. 1991. Interactions between woody plants and browsing mammals mediated by secondary metabolites. Ann. Rev. Ecol. Syst. 22: 431–446.CrossRefGoogle Scholar
  5. Burt-Smith, G. S., J. P. Grime and D. Tilman. 2003. Seedling resistance to herbivory as a predictor of relative abundance in a synthesised prairie community. Oikos 101: 345–353.CrossRefGoogle Scholar
  6. Buschmann, H., M. Keller, N. Porret, H. Dietz and P.J. Edwards. 2005. The effect of slug grazing on vegetation development and plant species diversity in an experimental grassland. Funct. Ecol. 19: 291–298.CrossRefGoogle Scholar
  7. Chapman, S. K., S. C. Hart, N. S. Cobb, T. G. Whitham and G. W. Koch. 2003. Insect herbivory increases litter quality and decomposition: an extension of the acceleration hypotheses. Ecology 84: 2867–2876.CrossRefGoogle Scholar
  8. Chytrý M. ed. (2007). Vegetace České republiky 1. Travinná a keřičková vegetace [Vegetation of the Czech Republic 1. Grassland and heathland vegetation]. Academia, Praha.Google Scholar
  9. Cingolani, A. M., G. Posse and M. B. Collantes. 2005. Plant functional traits, herbivore selectivity and response to sheep grazing in Patagonian steppe grasslands. J. Appl. Ecol. 42: 50–59.CrossRefGoogle Scholar
  10. Cornelissen, J. H. C. 1996. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J. Ecol. 84: 573–582.CrossRefGoogle Scholar
  11. Cornelissen, J. H. C. and K. Thompson. 1997. Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol. 135: 109–114.CrossRefGoogle Scholar
  12. Cornelissen, J. H. C., M. J. A. Werger, P. Castro-Diéz, J. W. A. van Rheenen and A. P. Rowland. 1997. Foliar nutrients in relation to growth, allocation and leaf traits in seedlings of a wide range of woody plant species and types. Oecologia 111: 460–469.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cornelissen, J. H. C., N. Pérez-Harguindeguy, S. Díaz, J. P. Grime, B. Marzano, M. Cabido, F. Vendramini and B. Cerabolini. 1999. Leaf structure and defense control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol. 143: 191–200.CrossRefGoogle Scholar
  14. Cornelissen, J. H. C., H. M. Quested, D. Gwynn-Jones, R. S. P. van Logtestijn, M. A. H. de Beus, A. Kondratchuk, T. V. Callaghan and R. Aerts. 2004. Leaf digestability and litter decomposability are related in a wide range of subarctic plant species and types. Funct. Ecol. 18: 779–786.CrossRefGoogle Scholar
  15. de Bello, F., J. Lepš and M.-T. Sebastia. 2005. Predictive value of plant traits to grazing along a climatic gradient in the Mediterranean. J. Appl. Ecol. 42: 824–833.CrossRefGoogle Scholar
  16. Díaz, S., I. Noy-meir and M. Cabido. 2001. Can grazing response of herbaceous plants be predicted from simple vegetative traits? J. Appl. Ecol. 38:497–508.CrossRefGoogle Scholar
  17. Dupré, C. and M. Diekmann. 2001. Differences in species richness and life-history traits between grazed and abandoned grasslands in southern Sweden. Ecography 24: 275–286.CrossRefGoogle Scholar
  18. Dvořák, L. and M. Horsák. 2003. Současné poznatky o plzáku Arion lusitanicus (Mollusca: Pulmonata) v České republice. Čas. Slez. Muz. Opava (A)52:67–71.Google Scholar
  19. Edwards, G. R. and M. J. Crawley. 1999. Herbivores, seed banks and seedling recruitment in mesic grassland. J. Ecol. 87: 423–435.CrossRefGoogle Scholar
  20. Fenner, M., M. E. Hanley and R. Lawrence. 1999. Comparison of seedling and adult palatability in annual and perennial plants. Funct. Ecol. 13: 546–551.CrossRefGoogle Scholar
  21. Garnier, E., S. Lavorel, P. Ansquer, H. Castro, P. Cruz, J. Dole▯al, O. Eriksson, C. Fortunel, H. Freitas, C. Golodets, K. Grigulis, C. Jouany, E. Kazakou, J. Kigel, M. Kleyer, V. Lehsten, J. Lepš, T. Meier, R Pakeman, M. Papadimitriou, V. P. Papanastasis, H. Quested, F. Quétier, M. Robson, C. Roumet, G. Rusch, Ch. Skarpe, M. Sternberg, J.-P. Theau, A. Thébault, D. Vile and M. P. Zarovali. 2007. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons from an application to 11 European sites. Ann. Bot. 99: 967–985.CrossRefGoogle Scholar
  22. Grime, J. P., J. H. C. Cornelissen, K. Thompson and J. G. Hodgson. 1996. Evidence of a causal connection between anti-herbivore defense and the decomposition rate of leaves. Oikos 77:489–494.CrossRefGoogle Scholar
  23. Grime, J. P. 2001. Plant Strategies, Vegetation Processes and Ecosystem Properties. John Wiley & Sons, Chichester.Google Scholar
  24. Hendriks, R. J. J., N. J. de Boer and J. M. van Groenendael. 1999. Comparing the preferences of three herbivore species with resistance traits of 15 perennial dicots: the effects of phylogenetic constraints. Plant Ecology 143: 141–152.CrossRefGoogle Scholar
  25. Herms, D. A. and W. J. Mattson. 1992. The dilemma of plants: to grow or defend. Quart. Rev. Biol. 67:283–335.CrossRefGoogle Scholar
  26. Hulme, P. E. 1996. Herbivory, plant regeneration, and species coexistence. J. Ecol. 84: 609–615.CrossRefGoogle Scholar
  27. Janssen, T. and K. Bremer. 2004. The age of major monocot groups inferred from 800+ rbcL sequences. Bot. J. Linn. Soc. 146: 385–398.CrossRefGoogle Scholar
  28. Karban, R. and A. A. Agrawal. 2002. Herbivore offense. Ann. Rev. Ecol. Syst. 33: 641–664.CrossRefGoogle Scholar
  29. Kellog, E. A. 2001. Evolutionary history of the grasses. Plant Phys. 125: 1198–1205.CrossRefGoogle Scholar
  30. Klotz, F., I. Kühn and W. Durka. 2002. BIOLFLOR - Eine Daten-bank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland. Bundesamt für Naturschutz, Bonn, Bad Godes-berg.Google Scholar
  31. Kotorová, I. and J. Lepš. 1999. Comparative ecology of seedling recruitment in an oligotrophic wet meadow. J. Veg. Sci. 10: 175–186.CrossRefGoogle Scholar
  32. Kubát, K., L. Hrouda, J. Chrtek jun., Z. Kaplan, J. Kirschner and J. Štìpánek (eds). 2002. Klič ke květeně České republiky. Academia, Praha.Google Scholar
  33. Lepš, J. 1999. Nutrient status, disturbance and competition: an experimental test of relationships inawet meadow. J. Veg. Sci. 10: 219–230.CrossRefGoogle Scholar
  34. Palmer, M. V. 1994. Variation in species richness – towards a unification of hypothesis. Folia Geobot. Phytotax. 29: 511–530.CrossRefGoogle Scholar
  35. Pérez-Harguindeguy, N., S. Díaz, F. Vendramini, J. H. C. Cornelissen, D. E. Gurvich and M. Cabido. 2003. Leaf traits and herbivore selection in the field and in cafeteria experiments. Austral Ecology 28: 642–650.CrossRefGoogle Scholar
  36. R Development Core Team. 2007. R- a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  37. Rhoades, D. F. 1983. Herbivore population dynamics and plant chemistry. In: R. F. Denno and M. S. McClure (eds), Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, London. pp. 155–204.CrossRefGoogle Scholar
  38. Schädler, M., G. Jung, H. Auge and R. Brandl. 2003. Palatability, decomposition and insect herbivory: patterns in a successional old-field plant community. Oikos 103: 121–132.CrossRefGoogle Scholar
  39. Scheidel, U. and H. Bruelheide, 2005. Effects of slug herbivory on the seedling establishment of two montane Asteraceae species. Flora 200: 309–320.CrossRefGoogle Scholar
  40. Stevens, P. F. 2001 onwards. Angiosperm Phylogeny Website, version 7.0, May 2006.
  41. Strauss, S. Y. and A. A. Agrawal, 1999. The ecology and evolution of plant tolerance to herbivory. Trends Ecol. Evol. 14: 179–185.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Szentesi, Á. 2006. Pre-dispersal seed predation by Bruchidius villo-sus (Coleoptera, Bruchidae) in Laburnum anagyroides (Fabaceae, Genisteae). Comm. Ecol. 7: 13–22.CrossRefGoogle Scholar
  43. Wardle, D. A., K. I. Bonner and G. M. Barker. 2002. Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Funct. Ecol. 16: 585–595.CrossRefGoogle Scholar
  44. Webb, C. O., D. D. Ackerly, M. A. McPeek and M. J. Donoghue. 2002. Phylogenies and community ecology. Ann. Rev. Ecol. Syst. 33:475–505.CrossRefGoogle Scholar
  45. Westoby, M. 1999. Generalization in functional plant ecology: the species-sampling problem, plant ecology strategy schemes, and phylogeny. In: F. I. Pugnaire and F. Vallandares (eds), Handbook of Functional Plant Ecology. M. Dekker, New York. pp. 847–872.Google Scholar
  46. Wilf, P., C. C. Labandeira, K. R. Johnson, P. D. Coley and A. D. Cutter. 2001. Insect herbivory, plant defense, and early Cenozoic climate change. PNAS 98: 6221–6226.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Botany, Faculty of ScienceUniversity of South BohemiaČeské BudìjoviceCzech Republic
  2. 2.Institute of EntomologyBiological Centre of Academy of Sciences of the Czech RepublicČeské BudějoviceCzech Republic

Personalised recommendations