Importance of species abundance for assessment of trait composition: an example based on pollinator communities

Abstract

Measurements of trait community composition are known to be sensitive to the way species abundance is assessed, but not to what extent. This was investigated by considering two of the most commonly used indices of community trait composition, trait averages and functional diversity, in bee communities along a post-fire environmental gradient. The indices were computed using three different species abundance measurements (log and unlog number of individuals and species occurrence only) and 5 traits. For certain traits, the responses of the indices to fire varied according to how species abundance was measured. The measurements that took species abundance into account in the most distinct way (e.g., occurrence vs. unlog data) produced the least similar results for all traits. Species were then grouped into different classes on the basis of their relative abundance (i.e., dominants, subdominants, and rare species). As a result, the measure that attaches the highest importance to the abundance of species (unlog data) related mostly to the dominant species traits, while the measure attaching the lowest (i.e., species occurrence) related more to rare species traits. Species diversity was mostly independent of trait averages and functional diversity, regardless of the measure of species abundance used. We also quantified functional redundancy (i.e., the potential minus the observed functional diversity in each community). When more weight was attached to species abundance, redundancy decreased and tended to be less correlated with species diversity. Overall, the way species abundance is taken into consideration in indices of functional composition offers promising insights into the way community assembly mechanisms respond to environmental changes.

Abbreviations

FD:

Functional Diversity

ITD:

Inter-Tegula Distance

log/unlog:

Species abundance based on number of individuals with or without logarithmic transformation

References

  1. Ackerly, D.D., Knight, C.A., Weiss, S.B., Barton, K. and Starmer, K.P. 2002. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia 130:449–457.

    CAS  Article  Google Scholar 

  2. Biesmeijer, J.C., Roberts, S.P.M., Reemer, M., Ohlemuller, R., Edwards, M., Peeters, T., Schaffers, A.P., Potts, S.G., Kleukers, R., Thomas, C.D., Settele, J. and Kunin, W.E. 2006. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313: 351–354.

    CAS  Article  Google Scholar 

  3. Botta-Dukát, Z. 2005. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science 16:533–540.

    Article  Google Scholar 

  4. Cingolani, A.M., Posse, G. and Collantes, M.B. 2005. Plant functional traits, herbivore selectivity and response to sheep grazing in Patagonian steppe grasslands. Journal of Applied Ecology 42:50–59.

    Article  Google Scholar 

  5. Cingolani, A.M., Cabido, M., Gurvich, D.E., Renison, D., and Diaz, S. 2007. Filtering processes in the assembly of plant communities: are species presence and abundance driven by the same traits? Journal of Vegetation Science 18: 911–920.

  6. de Bello, F., Lepš, J. and Sebastià, M.T. 2006. Variations in species and functional plant diversity along climatic and grazing gradients. Ecography 29:801–810.

    Article  Google Scholar 

  7. Diaz, S., Lavorel, S., Chapin, F.S., Tecco, P.A., Gurvich, D.E. and Grigulis, K. 2007. Functional diversity - at the crossroads between ecosystem functioning and environmental filters. In: Canadell, J., Pataki D.E. and Pitelka L.F. (eds.). Terrestrial Ecosystem in a Changing World. Springer, Berlin. pp. 81–91.

  8. Garnier, E., Cortez, J., Billes, G., Navas, M.L., Roumet, C., Debussche, M., Laurent, G., Blanchard, A., Aubry, D., Bellmann, A., Neil, C. and Toussaint, J. P. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637.

    Article  Google Scholar 

  9. Kafer, J. and Witte, J.P.M. 2004. Cover-weighted averaging of indicator values in vegetation analyses. Journal of Vegetation Science 15:647–652.

    Article  Google Scholar 

  10. Kremer, C., Williams, N.M., Aizen, M.A., Gemmill-Herren, B., Le-Buhn, G., Minckley, R., Packer, L., Potts, G.S., Roulston, T., Steffan-Dewenter, I., Vázquez, D.P., Winfree, R., Adams, L., Crone, E.E., Greenleaf, S.S., Keitt, T.H., Klein, A-M., Regetz, J. and Ricketts, T.H. 2007. Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecology Letters 10:299–314.

    Article  Google Scholar 

  11. Lavorel, S., Grigulis, K., McIntyre, S., Garden, D., Willams, N., Dorrough, J., Berman, S., Quetier, F., Thebault, A. and Bonis, A. (2008) Assessing functional diversity in the field methodology matters! Functional Ecology (in press).

  12. Lepš, J., de Bello, F., Lavorel, S. and Berman, S. 2006. Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78:481–501.

    Google Scholar 

  13. Lepš J. and Hadincová V. 1992. How reliable are our vegetation analyses? Journal Vegetation Science 3:119–124.

  14. Magurran, A.E. 2004. Measuring Biological Diversity. Blackwell, Oxford.

    Google Scholar 

  15. Mason, N.W.H., Mouillot, D., Lee, W.G. and Wilson, J.B. 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112–118.

    Article  Google Scholar 

  16. Moretti, M., Obrist, M.K. and Duelli, P. 2004. Arthropod biodiversity after forest fires: winners and losers in the winter fire regime of the southern Alps. Ecography 27:173–186.

    Article  Google Scholar 

  17. Moretti, M., Duelli, P. and Obrist, M.K. 2006. Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests. Oecologia 149:312–327.

    Article  Google Scholar 

  18. Mühlenberg M. 1993. Freilandökologie. Quelle and Meyer, München.

    Google Scholar 

  19. Naeem, S. 1998. Species redundancy and ecosystem reliability. Conservation Biology 12:39–45.

    Article  Google Scholar 

  20. Novotny, V. and Basset, Y. 2000. Rare species in communities of tropical insect herbivores: pondering the mystery of singletons. Oikos 89:564–572.

    Article  Google Scholar 

  21. Petchey, O.L. and Gaston, K.J. 2006. Functional diversity: back to basics and looking forward. Ecology Letters 9:741–758.

    Article  Google Scholar 

  22. Peterson, G., Allen, C.R. and Holling, C.S. 1998. Ecological resilience, biodiversity, and scale. Ecosystems 1:6–18.

    Article  Google Scholar 

  23. Rao, C.R. 1982. Diversity and dissimilarity coefficients - a unified approach. Theoretical Population Biology 21: 24–43.

    Article  Google Scholar 

  24. van der Maarel, E. 1979. Transformation of cover-abundance values in phytosociology and its effect on community similarity. Vegetatio 38:138–148.

    Google Scholar 

  25. Walker, B., Kinzig, A. and Langridge, J. 1999. Plant attribute diversity, resilience, and ecosystem function: The nature and significance of dominant and minor species. Ecosystems 2:95–113.

    Article  Google Scholar 

  26. Whittaker, R.H. 1970. Communities and Ecosystems. MacMillan, New York.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. de Bello.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

de Bello, F., Lepš, J., Lavorel, S. et al. Importance of species abundance for assessment of trait composition: an example based on pollinator communities. COMMUNITY ECOLOGY 8, 163–170 (2007). https://doi.org/10.1556/ComEc.8.2007.2.3

Download citation

Keywords

  • Bee
  • Biodiversity
  • Community assembly
  • Dominant and rare species
  • Fire
  • Functional trait
  • Redundancy