Community Ecology

, Volume 8, Issue 2, pp 151–162 | Cite as

Vegetation distribution along the altitudinal gradient in the northwestern Red Sea region

  • A. HegazyEmail author
  • J. Lovett-Doust
  • O. Hammouda
  • N. Gomaa


The distribution of plant communities and the pattern of species diversity were studied along an altitudinal gradient in the northwestern Red Sea region. A total of 58 stands were studied, using ten quadrats (10 m × 10 m) per stand. The classification of vegetation using the Two Way Indicator Species Analysis (TWINSPAN) identified five groups representing different altitudinal ranges. Detrended Correspondence Analysis (DCA) clearly distinguished these groups by the first two DCA axes. Edaphic factors such as soil texture, CaCO3, organic carbon, and electrical conductivity contribute to the distribution of plant communities. Species richness, Shannon-index of diversity and evenness show a hump-shaped curve along the altitudinal gradient, whereas beta diversity decreases with elevation. Variation in the diversity and the distributional behaviour of plant species and plant communities in the study area may be attributed to the change of water resources, climatic factors, edaphic variables and anthropogenic pressures along the elevation gradient. The implications of the results are discussed and recommendations are suggested for conservation and sustainable utilization of vegetation.


Altitude Desert Diversity Red Sea Vegetation 



Two Way Indicator Species Analysis


Detrended Correspondence Analysis


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbadi, G.A. and M.A. El Sheikh. 2002. Vegetation analysis of Failaka Island (Kuwait). J. Arid Environ. 50:153–165.CrossRefGoogle Scholar
  2. Abd El-Ghani, M.M. 1996. Vegetation along a transect in the Hijaz mountains (Saudi Arabia). J. Arid Environ. 32: 289–304.CrossRefGoogle Scholar
  3. Abd El-Ghani, M.M. 1998. Environmental correlates of species distribution in arid desert ecosystems of eastern Egypt. J. Arid Environ. 38: 297–313.CrossRefGoogle Scholar
  4. Abd El-Ghani, M.M. 2000. Floristics and environmental relations in two extreme desert zones of western Egypt. Global Ecol. Biogeogr. 9: 499–516.CrossRefGoogle Scholar
  5. Abd El-Ghani, M.M. and W.M. Amer. 2003. Soil-vegetation relationships in a coastal desert plain of southern Sinai, Egypt. J. Arid Environ. 55: 607–628.CrossRefGoogle Scholar
  6. Batanouny, K.H. 1974. Eco-physiological studies on desert plants. IX. Types of traspiration curves of Zilla spinosa. Prantl. under natural conditions. Flora 163: 1–6.CrossRefGoogle Scholar
  7. Black, C.A. (ed.) 1979. Methods of Soil Analysis. American Society of Agronomy, Part 2. pp. 771–1572.Google Scholar
  8. Boulos, L. 1999. Flora of Egypt, Vol. 1. Azollaceae-Oxalidace. Al Hadara Publishing, Cairo.Google Scholar
  9. Boulos, L. 2000. Flora of Egypt, Vol. 2. Geraniaceae-Boraginaceae. Al Hadara Publishing, Cairo.Google Scholar
  10. Boulos, L. 2002. Flora of Egypt, Vol. 3. Verbenaceae-Compositae. Al Hadara Publishing, Cairo.Google Scholar
  11. Boulos, L. 2005. Flora of Egypt, Vol. 4. Monocotyledons: Alismataceae-Orchidaceae. Al Hadara Publishing, Cairo.Google Scholar
  12. Burke, A. 2003. How special are Etendeka mesas? Flora and elevation gradients in an arid landscape in north-west Namibia. J. Arid Environ. 55: 747–764.CrossRefGoogle Scholar
  13. El Hadidi, M.N. and H.A. Hosni. 2000. Conservation and threats. In: M.N. El Hadidi, (ed.), Flora Aegyptiaca, Vol. 1, Part. 1. The Palm Press, Cairo. pp. 105–116Google Scholar
  14. El-Demerdash, M.A., A.K. Hegazy and A.M. Zilay. 1995. Vegetation–soil relationships in Tihamah coastal plains of Jazan region, Saudi Arabia. J. Arid Environ. 30: 161–174.CrossRefGoogle Scholar
  15. Enright, N.J., B.P. Miller and R. Akhter. 2005. Desert vegetation and vegetation-environment relationships in Kirthar National Park, Sindh, Pakistan. J. Arid Environ. 61: 397–418.CrossRefGoogle Scholar
  16. Fosaa, A.M. 2004. Biodiversity patterns of vascular plants species in mountain vegetation in the Faroe Islands. Divers. Distrib. 10: 217–223.CrossRefGoogle Scholar
  17. Fossati, J., G. Pautou and J.P. Peltier. 1998. Wadi vegetation of the north-Eastern Desert of Egypt. Feddes Repert. 109: 313–327.CrossRefGoogle Scholar
  18. Ghazanfar, S.A. 1991. Vegetation structure and phytogeography of Jabal Shams, an arid mountain in Oman. J. Biogeogr. 18: 299–309.CrossRefGoogle Scholar
  19. Grytnes, J.A. 2003. Species richness patternsof vascular plants along seven altitudinal transects in Norway. Ecography 26: 291–300.CrossRefGoogle Scholar
  20. Grytnes, J.A., E. Heegaard and P.G. Ihlen. 2006. Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway. Acta Oecolog. 29: 241–246.CrossRefGoogle Scholar
  21. Gutiérrez, J. R. and W.G. Whitford. 1987. Chihuahuan Desert annuals: importance of water and nitrogen. Ecology 68: 2032–2045.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gutiérrez, J.R., F. López-Cortes and P. A. Marquet. 1998. Vegetation in an altitudinal gradient along the Río Loa in the Atacama Desert of northern Chile. J. Ecol. 40: 383–399.Google Scholar
  23. Hegazy, A.K. and W.M. Amer. 2002. Altitudinal and latitudinal diversity of the flora on eastern and western sides of the Red Sea. In: B. Sener (ed.), Biodiversity: Biomolecular Aspects of Biodiversity and Innovative Utilization. Kluwer Academic / Plenum Publishers, New York. pp. 197–216.Google Scholar
  24. Hegazy, A. K., A.G. Fahmy and H.A. Mohamed. 2004a. Shayeb El-Banat mountain group of the Red Sea coast: a proposed biosphere reserve. Proceedings of the symposium on natural resources and their conservation in Egypt and Africa. 19–21 March 2001, Cairo Univ. pp. 94–121.Google Scholar
  25. Hegazy, A.K., M.A. El-Demerdash and H.A. Hosni. 1998. Vegetation, species diversity and floristic relations along an altitudinal gradient in south-west Saudi Arabia. J. Arid Environ. 38: 3–13.CrossRefGoogle Scholar
  26. Hegazy, A.K., G.M. Fahmy, M.I. Ali and N.H. Gomaa. 2004b. Vegetation diversity in natural and agro-ecosystems of arid lands. Community Ecology 5: 163–176.CrossRefGoogle Scholar
  27. Hemming, C.F. 1961. The ecology of the coastal area of northern Eritrea. J. Ecol. 49: 55–78.CrossRefGoogle Scholar
  28. Hill, M.O. 1979a. TWINSPAN – A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Cornell University, Ithaca, NY.Google Scholar
  29. Hill, M.O. 1979b. DECORANA – A FORTRAN program for detrended correspondence analysis and reciprocal averaging. Cornell University, Ithaca, NY.Google Scholar
  30. Jackson, M.L. 1962. Soil Chemical Analysis. Constable and Co. Ltd, London.Google Scholar
  31. Kadmon, R. and A. Danin. 1999. Distribution of plant species in Israel in relation to spatial variation in rainfall. J. Veg. Sci. 10: 421–432.CrossRefGoogle Scholar
  32. Kassas, M. 1953. Landforms and plant cover in the Egyptian desert. Bull. Soc. Géog. Egypte 26: 193–205.Google Scholar
  33. Kassas,M. 1957. On the ecology of the Red Sea coastal land. J. Ecol. 45: 187–203.Google Scholar
  34. Kassas, M. 1962. On the phytosociology of the desert vegetation of Egypt. Annals of Arid Zone I: 54–83.Google Scholar
  35. Kassas, M. and W.A. Girgis. 1965. Habitat and plant communities in the Egyptian desert. VI. The units of a desert ecosystem. J. Ecol. 53: 715–728.Google Scholar
  36. Kassas, M. and W.A. Girgis. 1972. Studies on the ecology of Eastern Desert of Egypt. I. The region between latitude 27º 30´ and latitude 25º 30´N. Bull. Soc. Géog. Egypte 41–42: 43 – 72.Google Scholar
  37. Kassas, M. and M.A. Zahran. 1967. On the ecology of the Red Sea littoral salt marsh, Egypt. Ecol. Monogr. 37: 297–315.CrossRefGoogle Scholar
  38. Kessler, M. 2000. Elevation gradients in species richness and endemism of selected plat groups in the central Bolivian Andes. Plant Ecol. 149: 181–193.CrossRefGoogle Scholar
  39. Kumar, S. 1996. Trends in structural compositional attributes of dune-interdune vegetation and their edaphic relations in the Indian desert. Vegetatio 124: 73–93.CrossRefGoogle Scholar
  40. Lieberman, D., M. Lieberman, R. Peralta and G. Hartshorn. 1996. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. J. Ecol. 84: 137–152.CrossRefGoogle Scholar
  41. Millington, A.C. and K. Pye. 1994. Biogeographical and geomorphological perspectives on environmental change in drylands. In: A.C. Millington and K. Pye (eds.), Environmental Change in Drylands: Biogeographical and Geomorphological Perspectives. John Wiley & Sons, Chichester. pp. 427–441.Google Scholar
  42. Ministry of Civil Aviation. 1975. Climatological Normals for the Arab Republic of Egypt up to 1975. Meteorological Authority, Cairo.Google Scholar
  43. Montasir, A.H. 1951. Studies on the autoecology of Zilla spinosa. Prantl. Bull. Fac. Sci. Cairo Univ. 29: 1–52.Google Scholar
  44. Noy-Meir, I. 1973. Desert ecosystems: environment and producers. Annu. Rev. Ecol. Syst. 4: 25–51.CrossRefGoogle Scholar
  45. Odland, A. and H.J.B. Birks. 1999. The altitudinal gradient of vascular plants species richness in Aurland, western Norway. Ecography 22: 548–566.CrossRefGoogle Scholar
  46. Ohlemüller, R. and J.B. Wilson. 2000. Vascular plants species richness along latitudinal and altitudinal gradients: a contribution from New Zealand temperate rainforests. Ecol. Lett. 3: 262–266.CrossRefGoogle Scholar
  47. Pielou, E.C. 1975. Ecological Diversity. Wiley, London.Google Scholar
  48. Rahbek, C. 1995. The elevation gradient of species richness: a uniform pattern? Ecography 18: 200–205.Google Scholar
  49. Sánchez-González, A. and L. López-Mata. 2005. Plant species richness and diversity along an altitudinal gradient in the Sierra Nevada, Mexico. Divers. Distrib. 11: 567–575.CrossRefGoogle Scholar
  50. Schultka, W. and R. Cornelius. 1997. Vegetation structure of a heavily grazed range in northern Kenya: tree and shrub canopy. J. Arid Environ. 36: 291–306.CrossRefGoogle Scholar
  51. Sharaf El Din, A. and K.H. Shaltout. 1985. On the phytosociology of Wadi Araba in the Eastern Desert of Egypt. Proc. Egypt. Bot. Soc. 4: 1311–1325.Google Scholar
  52. Shreve, F. 1951. Vegetation of the Sonoran Desert. Publications of Carnegie Institute, No.591.Google Scholar
  53. Tevis, L. 1958. Germination and growth of ephemerals induced by sprinkling a sand desert. Ecology 39: 681–688.CrossRefGoogle Scholar
  54. Vazquez García, J. A. and T.J. Givnish. 1998. Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlán. J. Ecol 86: 999–1020.CrossRefGoogle Scholar
  55. Wang, G., G. Zhou, L. Yang and Z. Li. 2002. Distribution, species diversity and life-form spectra of plant communities along an altitudinal gradient in the northern slopes of Qilianshan Mountains, Gansu, China. Plant Ecol. 165: 169–181.CrossRefGoogle Scholar
  56. Wilson, M.V. and A. Shmida. 1984. Measuring beta diversity with presence-absence data. J. Ecol. 72: 1055–1064.CrossRefGoogle Scholar
  57. Whittaker, R.H. 1972. Evolution and measurement of species diversity. Taxon 21: 213–251.CrossRefGoogle Scholar
  58. Wondzell, S.M., G.L. Cunningham and D. Bachelet. 1996. Relationships between landforms, geomorphic processes, and plant communities on a watershed in the northern Chihuahuan Desert. Landscape Ecol. 11: 351–362.CrossRefGoogle Scholar
  59. Xu, L., H. Liu, X. Chu and K. Su. 2006. Desert vegetation patterns at the northern foot of Tianshan Mountains: The role of soil conditions. Flora 201: 44–50.CrossRefGoogle Scholar
  60. Zahran, M.A. 1982. Vegetation types of Saudi Arabia. Publications of King Abdul Aziz University, Jeddah, Saudi Arabia.Google Scholar
  61. Zahran, M.A. and A.J. Willis. 1992. The Vegetation of Egypt. Chapman & Hall, London.CrossRefGoogle Scholar
  62. Zhang, J.-T. 1995. Quantitative Methods in Vegetation Ecology. China Science and Technology Press, Beijing.Google Scholar
  63. Zhang, J.-T. and T.G. Chen. 2004. Variation of plant communities along an elevation gradient in the Guandi Mountains, North China. Community Ecology 5: 227–233.CrossRefGoogle Scholar
  64. Zhang, Y.M., Y.N. Chen and B.R Pan. 2005. Distribution and floristics of desert plant communities in the lower reaches of Tarim River, southern Xinjiang, People’s Republic of China. J. Arid Environ. 63: 772–784.CrossRefGoogle Scholar
  65. Zimmerman, J.C., L.E. DeWald and P.G. Rowlands. 1999. Vegetation diversity in an interconnected ephemeral riparian system of north-central Arizona, USA. Biol. Conserv. 90: 217–228.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • A. Hegazy
    • 1
    Email author
  • J. Lovett-Doust
    • 2
  • O. Hammouda
    • 3
  • N. Gomaa
    • 3
  1. 1.Department of Botany, Faculty of ScienceCairo UniversityGizaEgypt
  2. 2.Department of Biological SciencesWindsor UniversityOntarioCanada
  3. 3.Department of Botany, Faculty of ScienceBeni-Sueif UniversityBeni-SueifEgypt

Personalised recommendations