Geographic and taxonomic bias in land snail distribution data of Hungary

Abstract

The importance of accurate species databases is debated in the recent literature of biodiversity assessment, considering that limited resources for conservation could be better allocated to assessment based on cost effective biodiversity features. I aimed to provide an understanding of sampling bias and provide practical advice to minimize bias either before or after data collection. I used 10×10 km2 UTM grid data for 121 land snail species to account for geographic and taxonomic sampling bias in Hungary. Sampling intensity corrected for species richness varied significantly among regions, although regions were not good predictors of sampling intensity. Residuals were significantly autocorrelated in 15 km distance, indicating small scale heterogeneity in sampling intensity compared to species richness. Sampling coverage and intensity were higher close to human settlements and sampling intensity was higher within protected areas than outside. Commonness of species was positively associated with sampling intensity, while some rare species were over-represented in the records. Sampling intensity of microsnails (<3 mm) was significantly lower than that of the more detectable large species (>15 mm). Systematic effects of the collecting methods used in malacological research may be responsible for these differences. Understanding causes of sampling bias may help to reduce its effects in ecological, biogeographical and conservation biological applications, and help to guide future research.

References

  1. Bank, R. 2004. Fauna europaea: mollusca, gastropoda. Fauna Europaea version 1.2, https://doi.org/www.faunaeur.org. Accessed: January, 2006.

  2. Benjamini, Y., D.Drai, G. Elmer, N. Kafkafi, and I. Golani. 2001. Controlling the false discovery rate in behavior genetics research. Behavioural Brain Research 125:279–284.

    CAS  Article  Google Scholar 

  3. Bini, L.M., J.A.F. Diniz-Filho, T.F.L.V.B. Rangel, R.P. Bastos and M.P. Pinto. 2006. Challenging Wallacean and Llinnean shortfalls: knowledge gradients and conservation planning in a biodiversity hotspot. Diversity and Distributions 12:475–482.

    Article  Google Scholar 

  4. Bivand, R. (with contributions by many authors). 2007. spdep: Spatial dependence: weighting schemes, statistics and models. R package version 0.4–9. URL: http://cran.r-project.org.

  5. Bomhard, B., D.M. Richardson, J.S. Donaldson, G.O. Hughes, G.F. Midgley, D.C. Raimondo, A.G. Rebelo, M. Rouget and W. Thuiller. 2005. Potential impacts of future land use and climate change on the red list status of the Proteaceae in the Cape floristic region, South Africa. Global Change Biology 11:1452–1468.

    Article  Google Scholar 

  6. Brooks, T.M., G.A.B. Da Fonseca and A.S.L. Rodrigues. 2004. Protected areas and species. Conservation Biology 18:616–618.

    Article  Google Scholar 

  7. Brown, J.H. and M.V. Lomolino. 1998. Biogeography. Sinauer Press, Sunderland, Massachusetts.

    Google Scholar 

  8. Cameron, R.A.D. and B.M. Pokryszko. 2005. Estimating the species richness and composition of land mollusc communities: problems, consequences and practical advice. Journal ofConchology 38:529–547.

    Google Scholar 

  9. Cowling, R.M., A.T. Knight, D.F. Faith, S. Ferrier, A.T. Lombard, A. Driver, M. Rouget, K. Maze and P.G. Desmet. 2004. Nature conservation requires more than a passion for species. Conservation Biology 18:1674–1676.

    Article  Google Scholar 

  10. Dévai, G. and M. Miskolczi. 1987. Javaslat egy új környezetminősitő értékelési eljârâsra a szitakötők hálótérképek szerinti előfordulàsi adatai alapjân. (Proposal for a new method of environmental quality evaluation on the basis of grid maps of distribution data of dragonflies). Acta Biologica Debrecina 19:33–54.

    Google Scholar 

  11. Fehér, Z. and A. Gubányi. 2001. The distribution of Hungarian molluscs. The Catalogue of the Mollusca Collection of the Hungarian Natural History Museum. Hungarian Natural History Museum, Budapest.

    Google Scholar 

  12. Fehér, Z., G. Majoros and A. Varga. 2006. A scoring method for the assessment of rarity and conservation value of the aquatic molluscs in Hungary. Heldia 6:101–114.

    Google Scholar 

  13. Freitag, S. and A.S. Van Jaarsveld. 1998. Sensitivity of selection procedures for priority conservation areas to survey extent, survey intensity and taxonomic knowledge. Proceedings of the Royal Society B 265:1475–1482.

    Article  Google Scholar 

  14. Gaston, K.J. 1994. Rarity. Chapman and Hall, London.

    Book  Google Scholar 

  15. Hungarian Central Statistical Office (KSH) 2001. A Magyar Köztársaság helységnévtára. Központi Statisztikai Hivatal, URL: http://helynevtar.ksh.hu/

  16. Kerney, M.P., R.A.D. Cameron and J.H. Jungbluth. 1983. Die Landschnecken Nord- und Mitteleuropas. P. Parey, Hamburg-Berlin.

    Google Scholar 

  17. Kirchner, C, R. Krätzner and F.W. Welter-Schultes. 1997. Flying snails - how far can Truncatellina (Pulmonata: Vertiginidae) be blown over the sea? Journal of Molluscan Studies 63:479–487.

    Article  Google Scholar 

  18. Kühn, I., R. Brandl and S. Klotz. 2004. The flora of German cities is naturally species rich. Evolutionary Ecology Research 6:749–764.

    Google Scholar 

  19. Lomolino, M.V. 2004. Conservation biogeography. In: M.V. Lomolino and L.R. Heaney (eds), Frontiers of Biogeography: New Directions in the Geography of Nature. Sinauer Associates, Sunderland, Massachusetts. pp. 293–296.

  20. Miskolczi, M., G. Dévai, G. Kertész and Á. Bajza. 1997. A magyarországi helységek kódjegyzéke az UTM rendszerű 10×10 km beosztású hálótérkép szerint. (Coding list of Hungarian settlements according to a 10×10 km scale grid map of the UTM system.) Acta Biologica Debrecina 8:43–194.

  21. Nelson, B.W., C.A.C. Ferreira, M.F.D. Silva and M.L. Kawasaki. 1990. Endemism centres, refugia and botanical collection density in Brasilian Amazonia. Nature 345:714–716.

    Article  Google Scholar 

  22. Patten, M.A. and R.A. Erickson. 2001. Conservation value and rankings of exotic species. Conservation Biology 15:817–818.

    Article  Google Scholar 

  23. Pintér, I. 1981. A malakológiai felkutatottság mértékének kiszámítása becsléssel. (Estimating the status of malacological inventories.) Soosiana 9:29–32.

  24. Pintér, I. 1985. Tájékoztató a magyarországi recens puhatestűek kutatásának eddigi eredményéről. (Information on the results of studying recent molluscs of Hungary.) Malacological Newsletter 5:23–28.

  25. Pintér, L. and A.S. Szigethy. 1979. Die Verbereitung der rezenten Mollusken Ungarns: neunachweise und berichtigungen, I. Soosiana 7:97–108.

    Google Scholar 

  26. Pintér, L. and A.S. Szigethy. 1980. Die Verbereitung der rezenten Mollusken Ungarns: neunachweise und berichtigungen, II. Soosiana 8:65–80.

    Google Scholar 

  27. Pintér, L., A. Richnovszky and A.S. Szigethy. 1979. Distribution of the Recent Mollusca of Hungary. Budapest. Soosiana Suppl. 1

  28. Ponder, W.F., G.A. Carter, P. Flemons and R.R. Chapman, 2001. Evaluation of museum collection data foruse in biodiversity assessment. Conservation Biology 15:648–657.

  29. Potvin, C. and D.A. Roff. 1993. Distribution-free and robust statistical methods: viable alternatives to parametric statistics. Ecology 74:1617–1628.

    Article  Google Scholar 

  30. Prendergast, J.R., S.N. Wood, J.H. Lawton and B.C. Eversham. 1993. Correcting for variation in recording effort in analyses of diversity hotspots. Biodiversity Letters 1:39–53.

    Article  Google Scholar 

  31. Pressey, R.L. 2004. Conservation planning and biodiversity: assembling the best data for the job. Conservation Biology 18:1677–1681.

    Article  Google Scholar 

  32. R Development Core Team. 2007. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL: http://www.R-project.org.

  33. Ramsey, R.D. and L. Shultz. 2004. Evaluating the geographical distribution of plants in Utah from the atlas of vascular plants of Utah. Western North American Naturalist 64:421–432.

  34. Reddy, S. and L.M. Dávalos. 2003. Geographical sampling bias and its implications for conservation priorities in Africa. Journal of Biogeography 30:1719–1727.

    Article  Google Scholar 

  35. Rundell, R.J. and R.H. Cowie. 2003. Preservation of species diversity and abundances in Pacific island land snail death assemblages. Journal of Conchology 38:155–170.

    Google Scholar 

  36. Soberón, J.M. and J.B. Llorente. 1993. The use of species accumulation functions for the prediction of species richness. Conservation Biology 7:480–488.

    Article  Google Scholar 

  37. Sokal, R.R. and F.J. Rohlf. 1995. Biometry. Freeman and Co, New York.

    Google Scholar 

  38. Sólymos, P. 2007. Are current protections of land snails in Hungary relevant to conservation? Biodiversity and Conservation 16:347–356.

    Article  Google Scholar 

  39. Sólymos, P. and Z. Fehér. 2005. Conservation prioritization using land snail distribution data in Hungary. Conservation Biology 19:1084–1094.

    Article  Google Scholar 

  40. Sólymos, P., I. Czentye and B. Tutkovics. 2007. A comparison of soil sampling and direct search in malacological field inventories. In: K. Tajovský, J. Schlaghamerský and V. PiDl (eds), Contributions to Soil Zoology in Central Europe, II. České Budéjovice. pp. 161–163.

  41. Stohlgren, T.J., J. F. Quinn and G. S. Waggoner. 1995. Status of biotic inventories in US national parks. Biological Conservation 71:97–106.

    Article  Google Scholar 

  42. Vágvölgyi,J. 1975. Body size, aerial dispersal, and origin of the Pacific land snail fauna. Systematic Zoology 24:465–488.

    Article  Google Scholar 

  43. Whittaker, R.J., M.B. Araújo, P. Jepson, R.J. Ladle, J.E.M. Watson and K.J. Willis. 2005. Conservation biogeography: assessment and prospect. Diversity and Distributions 11:3–23.

    Article  Google Scholar 

  44. Williams, P., D. Gibbons, C. Margules, A. Rebelo, C. Humphries and R. Pressey. 1996. A comparison of richness hotspots, rarity hotspots, and complementary areas for conserving diversity of British birds. Conservation Biology 10:155–174.

    Article  Google Scholar 

  45. Williams, P.H., CR. Margules and D.W. Hilbert. 2002. Data requirements and data sources for biodiversity priority area selection. Journal of Biosciences 27:327–338.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Sólymos.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Sólymos, P. Geographic and taxonomic bias in land snail distribution data of Hungary. COMMUNITY ECOLOGY 8, 239–246 (2007). https://doi.org/10.1556/ComEc.8.2007.2.10

Download citation

Keywords

  • Biodiversity
  • Biotic impediment
  • Gastropoda
  • Mollusca
  • Protected areas
  • Spatial autocorrelation
  • Spatial coverage
  • Spatial intensity