Community Ecology

, Volume 8, Issue 2, pp 239–246 | Cite as

Geographic and taxonomic bias in land snail distribution data of Hungary

  • P. SólymosEmail author


The importance of accurate species databases is debated in the recent literature of biodiversity assessment, considering that limited resources for conservation could be better allocated to assessment based on cost effective biodiversity features. I aimed to provide an understanding of sampling bias and provide practical advice to minimize bias either before or after data collection. I used 10×10 km2 UTM grid data for 121 land snail species to account for geographic and taxonomic sampling bias in Hungary. Sampling intensity corrected for species richness varied significantly among regions, although regions were not good predictors of sampling intensity. Residuals were significantly autocorrelated in 15 km distance, indicating small scale heterogeneity in sampling intensity compared to species richness. Sampling coverage and intensity were higher close to human settlements and sampling intensity was higher within protected areas than outside. Commonness of species was positively associated with sampling intensity, while some rare species were over-represented in the records. Sampling intensity of microsnails (<3 mm) was significantly lower than that of the more detectable large species (>15 mm). Systematic effects of the collecting methods used in malacological research may be responsible for these differences. Understanding causes of sampling bias may help to reduce its effects in ecological, biogeographical and conservation biological applications, and help to guide future research.


Biodiversity Biotic impediment Gastropoda Mollusca Protected areas Spatial autocorrelation Spatial coverage Spatial intensity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bank, R. 2004. Fauna europaea: mollusca, gastropoda. Fauna Europaea version 1.2, Accessed: January, 2006.
  2. Benjamini, Y., D.Drai, G. Elmer, N. Kafkafi, and I. Golani. 2001. Controlling the false discovery rate in behavior genetics research. Behavioural Brain Research 125:279–284.CrossRefGoogle Scholar
  3. Bini, L.M., J.A.F. Diniz-Filho, T.F.L.V.B. Rangel, R.P. Bastos and M.P. Pinto. 2006. Challenging Wallacean and Llinnean shortfalls: knowledge gradients and conservation planning in a biodiversity hotspot. Diversity and Distributions 12:475–482.CrossRefGoogle Scholar
  4. Bivand, R. (with contributions by many authors). 2007. spdep: Spatial dependence: weighting schemes, statistics and models. R package version 0.4–9. URL: Scholar
  5. Bomhard, B., D.M. Richardson, J.S. Donaldson, G.O. Hughes, G.F. Midgley, D.C. Raimondo, A.G. Rebelo, M. Rouget and W. Thuiller. 2005. Potential impacts of future land use and climate change on the red list status of the Proteaceae in the Cape floristic region, South Africa. Global Change Biology 11:1452–1468.CrossRefGoogle Scholar
  6. Brooks, T.M., G.A.B. Da Fonseca and A.S.L. Rodrigues. 2004. Protected areas and species. Conservation Biology 18:616–618.CrossRefGoogle Scholar
  7. Brown, J.H. and M.V. Lomolino. 1998. Biogeography. Sinauer Press, Sunderland, Massachusetts.Google Scholar
  8. Cameron, R.A.D. and B.M. Pokryszko. 2005. Estimating the species richness and composition of land mollusc communities: problems, consequences and practical advice. Journal ofConchology 38:529–547.Google Scholar
  9. Cowling, R.M., A.T. Knight, D.F. Faith, S. Ferrier, A.T. Lombard, A. Driver, M. Rouget, K. Maze and P.G. Desmet. 2004. Nature conservation requires more than a passion for species. Conservation Biology 18:1674–1676.CrossRefGoogle Scholar
  10. Dévai, G. and M. Miskolczi. 1987. Javaslat egy új környezetminősitő értékelési eljârâsra a szitakötők hálótérképek szerinti előfordulàsi adatai alapjân. (Proposal for a new method of environmental quality evaluation on the basis of grid maps of distribution data of dragonflies). Acta Biologica Debrecina 19:33–54.Google Scholar
  11. Fehér, Z. and A. Gubányi. 2001. The distribution of Hungarian molluscs. The Catalogue of the Mollusca Collection of the Hungarian Natural History Museum. Hungarian Natural History Museum, Budapest.Google Scholar
  12. Fehér, Z., G. Majoros and A. Varga. 2006. A scoring method for the assessment of rarity and conservation value of the aquatic molluscs in Hungary. Heldia 6:101–114.Google Scholar
  13. Freitag, S. and A.S. Van Jaarsveld. 1998. Sensitivity of selection procedures for priority conservation areas to survey extent, survey intensity and taxonomic knowledge. Proceedings of the Royal Society B 265:1475–1482.CrossRefGoogle Scholar
  14. Gaston, K.J. 1994. Rarity. Chapman and Hall, London.CrossRefGoogle Scholar
  15. Hungarian Central Statistical Office (KSH) 2001. A Magyar Köztársaság helységnévtára. Központi Statisztikai Hivatal, URL: Scholar
  16. Kerney, M.P., R.A.D. Cameron and J.H. Jungbluth. 1983. Die Landschnecken Nord- und Mitteleuropas. P. Parey, Hamburg-Berlin.Google Scholar
  17. Kirchner, C, R. Krätzner and F.W. Welter-Schultes. 1997. Flying snails - how far can Truncatellina (Pulmonata: Vertiginidae) be blown over the sea? Journal of Molluscan Studies 63:479–487.CrossRefGoogle Scholar
  18. Kühn, I., R. Brandl and S. Klotz. 2004. The flora of German cities is naturally species rich. Evolutionary Ecology Research 6:749–764.Google Scholar
  19. Lomolino, M.V. 2004. Conservation biogeography. In: M.V. Lomolino and L.R. Heaney (eds), Frontiers of Biogeography: New Directions in the Geography of Nature. Sinauer Associates, Sunderland, Massachusetts. pp. 293–296.Google Scholar
  20. Miskolczi, M., G. Dévai, G. Kertész and Á. Bajza. 1997. A magyarországi helységek kódjegyzéke az UTM rendszerű 10×10 km beosztású hálótérkép szerint. (Coding list of Hungarian settlements according to a 10×10 km scale grid map of the UTM system.) Acta Biologica Debrecina 8:43–194.Google Scholar
  21. Nelson, B.W., C.A.C. Ferreira, M.F.D. Silva and M.L. Kawasaki. 1990. Endemism centres, refugia and botanical collection density in Brasilian Amazonia. Nature 345:714–716.CrossRefGoogle Scholar
  22. Patten, M.A. and R.A. Erickson. 2001. Conservation value and rankings of exotic species. Conservation Biology 15:817–818.CrossRefGoogle Scholar
  23. Pintér, I. 1981. A malakológiai felkutatottság mértékének kiszámítása becsléssel. (Estimating the status of malacological inventories.) Soosiana 9:29–32.Google Scholar
  24. Pintér, I. 1985. Tájékoztató a magyarországi recens puhatestűek kutatásának eddigi eredményéről. (Information on the results of studying recent molluscs of Hungary.) Malacological Newsletter 5:23–28.Google Scholar
  25. Pintér, L. and A.S. Szigethy. 1979. Die Verbereitung der rezenten Mollusken Ungarns: neunachweise und berichtigungen, I. Soosiana 7:97–108.Google Scholar
  26. Pintér, L. and A.S. Szigethy. 1980. Die Verbereitung der rezenten Mollusken Ungarns: neunachweise und berichtigungen, II. Soosiana 8:65–80.Google Scholar
  27. Pintér, L., A. Richnovszky and A.S. Szigethy. 1979. Distribution of the Recent Mollusca of Hungary. Budapest. Soosiana Suppl. 1Google Scholar
  28. Ponder, W.F., G.A. Carter, P. Flemons and R.R. Chapman, 2001. Evaluation of museum collection data foruse in biodiversity assessment. Conservation Biology 15:648–657.Google Scholar
  29. Potvin, C. and D.A. Roff. 1993. Distribution-free and robust statistical methods: viable alternatives to parametric statistics. Ecology 74:1617–1628.CrossRefGoogle Scholar
  30. Prendergast, J.R., S.N. Wood, J.H. Lawton and B.C. Eversham. 1993. Correcting for variation in recording effort in analyses of diversity hotspots. Biodiversity Letters 1:39–53.CrossRefGoogle Scholar
  31. Pressey, R.L. 2004. Conservation planning and biodiversity: assembling the best data for the job. Conservation Biology 18:1677–1681.CrossRefGoogle Scholar
  32. R Development Core Team. 2007. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL: Scholar
  33. Ramsey, R.D. and L. Shultz. 2004. Evaluating the geographical distribution of plants in Utah from the atlas of vascular plants of Utah. Western North American Naturalist 64:421–432.Google Scholar
  34. Reddy, S. and L.M. Dávalos. 2003. Geographical sampling bias and its implications for conservation priorities in Africa. Journal of Biogeography 30:1719–1727.CrossRefGoogle Scholar
  35. Rundell, R.J. and R.H. Cowie. 2003. Preservation of species diversity and abundances in Pacific island land snail death assemblages. Journal of Conchology 38:155–170.Google Scholar
  36. Soberón, J.M. and J.B. Llorente. 1993. The use of species accumulation functions for the prediction of species richness. Conservation Biology 7:480–488.CrossRefGoogle Scholar
  37. Sokal, R.R. and F.J. Rohlf. 1995. Biometry. Freeman and Co, New York.Google Scholar
  38. Sólymos, P. 2007. Are current protections of land snails in Hungary relevant to conservation? Biodiversity and Conservation 16:347–356.CrossRefGoogle Scholar
  39. Sólymos, P. and Z. Fehér. 2005. Conservation prioritization using land snail distribution data in Hungary. Conservation Biology 19:1084–1094.CrossRefGoogle Scholar
  40. Sólymos, P., I. Czentye and B. Tutkovics. 2007. A comparison of soil sampling and direct search in malacological field inventories. In: K. Tajovský, J. Schlaghamerský and V. PiDl (eds), Contributions to Soil Zoology in Central Europe, II. České Budéjovice. pp. 161–163.Google Scholar
  41. Stohlgren, T.J., J. F. Quinn and G. S. Waggoner. 1995. Status of biotic inventories in US national parks. Biological Conservation 71:97–106.CrossRefGoogle Scholar
  42. Vágvölgyi,J. 1975. Body size, aerial dispersal, and origin of the Pacific land snail fauna. Systematic Zoology 24:465–488.CrossRefGoogle Scholar
  43. Whittaker, R.J., M.B. Araújo, P. Jepson, R.J. Ladle, J.E.M. Watson and K.J. Willis. 2005. Conservation biogeography: assessment and prospect. Diversity and Distributions 11:3–23.CrossRefGoogle Scholar
  44. Williams, P., D. Gibbons, C. Margules, A. Rebelo, C. Humphries and R. Pressey. 1996. A comparison of richness hotspots, rarity hotspots, and complementary areas for conserving diversity of British birds. Conservation Biology 10:155–174.CrossRefGoogle Scholar
  45. Williams, P.H., CR. Margules and D.W. Hilbert. 2002. Data requirements and data sources for biodiversity priority area selection. Journal of Biosciences 27:327–338.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Ecology, Faculty of Veterinary ScienceSzent István UniversityBudapestHungary

Personalised recommendations