Advertisement

Community Ecology

, Volume 8, Issue 1, pp 47–56 | Cite as

Temperature-dependent effects on mutualistic, antagonistic, and commensalistic interactions among insects, fungi and mites

  • R. W. HofstetterEmail author
  • T. D. Dempsey
  • K. D. Klepzig
  • M. P. Ayres
Article

Abstract

The relative abundance and nature of associations between symbiotic species can be affected by abiotic conditions with consequences for population dynamics. We investigated the effects of temperature on the community of mites and fungi associated with the southern pine beetle, Dendroctonus frontalis, an important pest of pine forests in the southern United States. First, we determined whether the growth rates of mutualistic and antagonistic fungi associated with D. frontalis differed in their responses to temperature. Second, we tested the effects of temperature on the abundance of, and interactions among, fungi, mites and beetles within D. frontalis-infested trees. Fungi differed in their growth responses to temperature, resulting in changes in fungal-beetle associations. Mite species associated with D. frontalis also differed in their responses to temperature, resulting in different mite communities associated with bark beetle progeny. The effects of temperature on beetle reproduction could not be assessed because of high wood borer density, but inter-relations among surviving beetles, mites and fungi were altered by temperature. Results support the hypothesis that temperature can produce direct and indirect effects on the web of mutualistic and antagonistic relationships within the community of D. frontalis and their symbiotic mites and fungi.

Keywords

Antagonism Bark beetle Climate change Commensalism Dendroctonus Fungi Mites Mutualism Ophiostoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrewartha, H.G. and L.C. Birch. 1954. The Distribution and Abundance of Animals. The University of Chicago Press, Chicago, Illinois.Google Scholar
  2. Ayres, M.P., R.T. Wilkens, J.J. Ruel and E. Vallery. 2000. Fungal relationships and the nitrogen budget of phloem-feeding bark beetles (Coleoptera: Scolytidae). Ecology 81:2198–2210.CrossRefGoogle Scholar
  3. Barras, S.J. 1970. Antagonism between Dendroctonus frontalis and the fungus Ceratocystis minor. Ann. Entomol. Soc. Am. 63:1187–1190.CrossRefGoogle Scholar
  4. Barras, S.J. 1973. Reduction of progeny and development in the southern pine beetle following removal of symbiotic fungi. Can. Ent. 105:1295–1299.CrossRefGoogle Scholar
  5. Barras, S.J. and T.J. Perry. 1972. Fungal symbiontsin the prothoracic mycangium of Dendroctonus frontalis. Z. ang. Entomol. 71:95–104.CrossRefGoogle Scholar
  6. Bridges, J.R. 1983. Mycangial fungi of Dendroctonus frontalis (Coleoptera: Scolytidae) and their relationship to beetle population trends. Env. Ent. 12:858–861.CrossRefGoogle Scholar
  7. Bridges, J.R. and J.C. Moser. 1983. Role of two phoretic mites in transmission of bluestain fungus, Ceratocystis minor. Ecol. Ent. 8:9–12.CrossRefGoogle Scholar
  8. Bridges, J.R. and J.C. Moser. 1986. Relationship of phoretic mites (Acari: Tarsonemidae) to the bluestaining fungus, Ceratocystis minor, in trees infested by southern pine beetle (Coleoptera: Scolytidae). Env. Ent. 15:9–12.CrossRefGoogle Scholar
  9. Callaway, R.M. and L.R. Walker. 1997. Competition and facilitation: A synthetic approach to interactions in plant communities. Ecology 78:1958–1965.Google Scholar
  10. Coppedge, B.R., F.M. Stephen and G.W. Felton. 1995. Variation in female southern pine beetle size and lipid content in relation to fungal associates. Can. Ent. 127:145–154.CrossRefGoogle Scholar
  11. Francke-Grosmann, H. 1967. Ectosymbiosis in wood-inhabiting insects. In: S. M. Henry (ed.), Symbiosis, Volume II. Academic Press, New York. pp. 141–438.CrossRefGoogle Scholar
  12. Franklin, R.T. 1970. Observations on the blue stain-southern pine beetle relationship. J. Georgia Entomol. Soc. 5:53–57.Google Scholar
  13. Goldhammer, D.S., F.M. Stephen and T.D. Paine. 1990. The effect of the fungi Ceratocystis minor Hunt, Ceratocystis minor Hunt var. Barrasii Taylor, and SJB 122 on reproduction of the southern pine beetle, Dendroctonus frontalis Zimmerman (Coleoptera: Scolytidae). Can. Ent. 122:407–418.CrossRefGoogle Scholar
  14. Happ, G.M., C.M. Happ and S.J. Barras. 1975. Fine structure of the prothoracic mycangium, a chamber for the culture of symbiotic fungi in the southern pine beetle, Dendroctonus frontalis. Tissue and Cell 3:295–308.CrossRefGoogle Scholar
  15. Happ, G.M., C.M. Happ and S.J. Barras. 1976. Bark beetle-fungal symbiosis. II. Fine structure of a basidiomycetous ectosymbiont of the southern pine beetle. Can. J. Bot. 54:1049–1062.CrossRefGoogle Scholar
  16. Hofstetter, R.W., J.T. Cronin, K.D. Klepzig, J.C. Moser and M.P. Ayres. 2005a. Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle. Oecologia 147: 679–691.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Hofstetter, R.W., J.B. Mahfouz, K.D. Klepzig and M.P. Ayres. 2005b. Effects of tree phytochemistry on the interactions between endophloedic fungi associated with the southern pine beetle. J. Chem. Ecol. 31:551–572.CrossRefGoogle Scholar
  18. Hofstetter, R.W., J.C. Moser, K.D. Klepzig and M.P. Ayres. 2006. Seasonal dynamics of mites and fungi and their effects on the southern pine beetle. Env. Ent. 35:22–30.CrossRefGoogle Scholar
  19. Hsiau, P.T.W. and T.C. Harrington. 1997. Ceratocystiopsis brevicomi sp. nov., a mycangial fungus of Dendroctonus brevicomis (Coleoptera: Scolytidae). Mycologia 89:661–669.CrossRefGoogle Scholar
  20. Jacobs, K. and T. Kirisits. 2003. Ophiostoma kryptum sp. nov. from Larix decidua and Picea abies in Europe, similar to O. minus. Mycol. Res. 107:1231–1242.PubMedCrossRefGoogle Scholar
  21. Kinn, D.N. 1971. The life cycle and behavior of Cercoleipus coelonotus (Acarina: Mesostigmata): Including a survey of phoretic mite associations of California Scolytidae. University of California Publications in Entomology, Volume 65. Univ. of California Press, London, England.Google Scholar
  22. Kinn, D.N. and J.J. Witcosky. 1978. Variation in southern pine beetle attack height associated with phoretic uropodid mites. Can. Ent. 110:249–252.CrossRefGoogle Scholar
  23. Klepzig, K.D., J. Flores-Otero, R.W. Hofstetter and M.P. Ayres. 2004. Effects of available water on growth and competition of southern pine beetle associated fungi. Mycol. Res. 108:183–188.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Klepzig, K.D., J.C. Moser, M.J. Lombardero, M.P. Ayres, R.W. Hofstetter and C.J. Walkinshaw. 2001a. Mutualism and antagonism: ecological interactions among bark beetles, mites and fungi, In M. J. Jeger and N. J. Spence (eds.), Biotic Interactions in Plant-Pathogen Associations. CABI Publishing, New York. pp. 237–268.CrossRefGoogle Scholar
  25. Klepzig, K.D., J.C. Moser, M.J. Lombardero, R.W. Hofstetter and M.P. Ayres. 2001b. Symbiosis and competition: Complex interactions among beetles, fungi, and mites. Symbiosis 30:83–96.Google Scholar
  26. Klepzig, K.D. and R.T. Wilkens. 1997. Competitive interactions among symbiotic fungi of the southern pine beetle. Appl. Environ. Microbiol. 63:621–627.PubMedPubMedCentralGoogle Scholar
  27. Klepzig, K.D. and D.L. Six. 2004. Bark beetle fungal symbiosis: Context dependency in complex interactions. Symbiosis 37:189–206.Google Scholar
  28. Lombardero, M., M.P. Ayres, B.D. Ayres, and J.D. Reeve. 2000a. Cold tolerance of four species of bark beetle (Coleoptera: Scolytidae) in North America. Env. Entomol. 29:421–432.CrossRefGoogle Scholar
  29. Lombardero, M.J., K.D. Klepzig, J.C. Moser and M.P. Ayres. 2000b. Biology, demography and community interactions of Tarsonemus (Acarina: Tarsonemidae) mites phoretic on Dendroctonus frontalis (Coleoptera: Scolytidae). Agric. For. Entomol. 2:1–10.CrossRefGoogle Scholar
  30. Lombardero, M.J., M.P. Ayres, R.W. Hofstetter, J.C. Moser and K.D. Klepzig. 2003. Strong indirect interactions of Tarsonemus mites (Acrina: Tarsonemidae) and Dendroctonus frontalis (Coleoptera: Scolytidae). Oikos 102:243–252.CrossRefGoogle Scholar
  31. Miller, M.C. and B.R. Parresol. 1992. Winter increase of Dendroctonus frontalis Zimmerman (Coleoptera: Scolytidae) – a precursor for outbreaks. J. Appl. Entomol. 114:520–529.CrossRefGoogle Scholar
  32. Moser, J.C. 1985. Use of sporothecia by phoretic Tarsonemus mites to transport ascospores of coniferous bluestain fungi. Trans. Brit. Mycol. Soc. 84:750–753.CrossRefGoogle Scholar
  33. Moser, J.C. and J.R. Bridges. 1986. Tarsonemus mites phoretic on the southern pine beetle: attachment sites and number of bluestain ascospores carried. Proc. Entomol. Soc. Wash. 88:297–299.Google Scholar
  34. Moser, J.C., T.J. Perry, J.R. Bridges and H-F Yin. 1995. Ascospore dispersal of Ceratocystiopsis ranaculosus, a mycangial fungus of the southern pine beetle. Mycologia 87:84–86.CrossRefGoogle Scholar
  35. Moser, J.C., R.C. Wilkinson and E.W. Clark. 1974. Mites associated with Dendroctonus frontalis Zimmerman (Scolytidae: Coleoptera) in Central America and Mexico. Turrialba 24:379–381.Google Scholar
  36. Ness, J.H. and K. Bressmer. 2005. Abiotic influences on the behavior of rodents, ants, and plants affect an ant-seed mutualism. Eco-science 12: 76–81.Google Scholar
  37. Paine, T.D., K.F. Raffa and T.C. Harrington. 1997. Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Ann. Rev. Entomol. 42:179–206.CrossRefGoogle Scholar
  38. Post, E., R.O. Peterson, N.C. Stenseth and B.E. McLaren. 1999. Eco-system consequences of wolf behavoural response to climate. Nature 401: 905–907.CrossRefGoogle Scholar
  39. Pye, J.M., T.S. Price, S.R. Clarke and R.J. Huggett, Jr. 2006. A History of Southern Pine Beetle Outbreaks in the Southeastern United States through 2004. Georgia Forestry Commission, Macon, Georgia.Google Scholar
  40. SAS Institute. 1997. JMP 3.2.1. SAS Institute Inc., Cary, NC.Google Scholar
  41. Six, D.L. and T.D. Paine. 1998. Effects of mycangial fungi and host tree species on progeny survival and emergence of Dendroctonus ponderosae (Coleoptera: Scolytidae). Env. Ent. 27:1393–1401.CrossRefGoogle Scholar
  42. Stephen, F.M., C.W. Berisford, D.L. Dahlstein, P. Penn and J.C. Moser. 1993. Invertebrate and microbial associates. In: T. D. Schowalter and G.M. Filip (eds.), Beetle-Pathogen Interactions in Conifer Forests. Academic Press, San Diego, CA. pp. 129–147.Google Scholar
  43. Stireman III, J.O., L.A. Dyer, D.H. Janzen, M.S. Singer, J.T. Lill, R.J. Marquis, R.E. Ricklefs, G.L. Gentry, W. Hallwachs, P.D. Coley, J.A. Barone, H.F. Greeney, H. Connahs, P. Barbosa, H.C. Morais and I.R. Diniz. 2005. Climatic unpredictability and parasitism of caterpillars: Implications of global warming. Proceedings of the National Academy of Sciences 102(48): 17384–17387.CrossRefGoogle Scholar
  44. Turchin, P., P.L. Lorio, A.D. Taylor and R. Billings. 1991. Why do populations of southern pine beetles (Coleoptera: Scolytidae) fluctuate? Env. Ent. 20:401–409.CrossRefGoogle Scholar
  45. Walther, G-R., E. Post, P. Convey, A. Menzel, C. Parmesan, T.J.C. Beebee, J-M. Fromentin, O. Hoegh-Guldberg and F. Bairlein. 2002. Ecological responses to recent climate change. Nature 416: 389–395.CrossRefGoogle Scholar
  46. Webb, J.W. and R.T. Franklin. 1978. Influence of phloem moisture on brood development of the southern pine beetles (Coleoptera: Scolytidae). Env. Ent. 7:405–410.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • R. W. Hofstetter
    • 1
    Email author
  • T. D. Dempsey
    • 2
  • K. D. Klepzig
    • 3
  • M. P. Ayres
    • 2
  1. 1.School of ForestryNorthern Arizona UniversityFlagstaffUSA
  2. 2.Department of Biological SciencesDartmouth CollegeHanoverUSA
  3. 3.Southern Research StationUSDA Forest ServicePinevilleUSA

Personalised recommendations