Community Ecology

, Volume 8, Issue 1, pp 31–40 | Cite as

Assembly rules during old-field succession in two contrasting environments

  • E. RuprechtEmail author
  • S. Bartha
  • Z. Botta-Dukát
  • A. Szabó


Studies addressing the question of how communities develop reported contrasting temporal patterns of species associations during succession. Several hypotheses were formulated about succession, but a general explanation of community assembly is missing. We analysed trends of species associations during old-field succession in two contrasting habitats: the first with chernozemic brown forest soil and temperate climate, and the second with sand soil and dryer climate. Significant pair-wise associations were calculated across a range of spatial scales. Comparing the two succession seres, one under harsh and the other under favourable environment, we attempted to make generalisations about species relation patterns. We found no trend but fluctuation in the level of community organization during succession. None of the existing succession models explained our results about changes in spatial structure of grassland communities during succession. Fluctuation in the number of significant associations was more intense and took longer under less favourable environmental conditions. Our results suggest that the stressed habitat type posed stronger constraints on species coexistence during succession than the favourable habitat did, but validating this hypothesis needs further investigations.


Plant interactions Soil Spatial organization Spatial scale Species association Structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarssen, L. W. and R. Turkington. 1985. Vegetation dynamics and neighbour associations in pasture-community evolution. J. Ecol. 73:585–603.CrossRefGoogle Scholar
  2. Armesto, J. J., S. T. A. Pickett and M. J. McDonnell. 1991. Spatial heterogeneity during succession: a cyclic model of invasion and exclusion. In: J. Kolasa and S. T. A. Pickett (eds.), Ecological Heterogeneity. Springer-Verlag, New York, Inc. pp. 256–269.CrossRefGoogle Scholar
  3. Bartha, S. and M. Kertész. 1998. The importance of neutral-models in detecting interspecific spatial associations from ‘trainsect’ data. Tiscia 31:85–98.Google Scholar
  4. Bartha, S., S. T. A. Pickett and M. L. Cadenasso. 2000. Limitations to species coexistence in secondary succession. In: Proceedings IAVS Symposium. Opulus Press, IAVS, Uppsala. pp. 55–58.Google Scholar
  5. Belyea, L. R. and J. Lancaster. 1999. Assembly rules within a contingent ecology. Oikos 86:402–416.CrossRefGoogle Scholar
  6. Booth, B. D. and C. J. Swanton. 2002. Assembly theory applied to weed communities. Weed Science 50:2–13.CrossRefGoogle Scholar
  7. Borhidi, A. 1993. Characteristics of the climate of the Danube-Tisza Mid-Region. In: J. Szujkó-Lacza and D. Kováts (eds.), The Flora of the Kiskunság National Park. Hungarian Natural History Museum. pp. 9–20.Google Scholar
  8. Burke, I. C., W. K. Lauenroth, M. A.Vinton, P. B. Hook, R. H. Kelly, H. E. Epstein, M. R. Aguiar, M. D. Robles, M. O. Aguilera, K. L. Murphy and R. A. Gill. 1998. Plant-soil interactions in temperate grasslands. Biogeochemistry 42:121–143.CrossRefGoogle Scholar
  9. Csecserits, A. and T. Rédei. 2001. Secondary succession on sandy old-fields in Hungary. Appl. Veg. Sci. 4:63–74.CrossRefGoogle Scholar
  10. Dale, M. R. T., D. J. Blundon, D. A. MacIsaac and A. G. Thomas. 1991. Multiple species effects and spatial autocorrelation in detecting species associations. J. Veg. Sci. 2:635–642.CrossRefGoogle Scholar
  11. Diamond, J. M. 1975. Assembly of species communities. In: M. L. Cody and J. M. Diamond (eds.), Ecology and evolution of communities. Harvard University Press, Cambridge. pp. 342–444.Google Scholar
  12. Gitay, H. and J. B. Wilson. 1995. Post-fire changes in community structure of tall tussock grasslands: a test of alternative models of succession. J. Ecol. 83:775–782.CrossRefGoogle Scholar
  13. Greig-Smith, P. 1952. Ecological observations on degraded and secondary forest in Trinidad, British West Indies. II. Structure of the communities. J. Ecol. 40:316–330.CrossRefGoogle Scholar
  14. Greig-Smith, P. 1983. Quantitative Plant Ecology, 3rd edition. Blackwell Scientific Publications, Oxford.Google Scholar
  15. Hogeweg, P., B. Hesper, C. P. van Schaik and W. G. Beeftink. 1985. Patterns in vegetation succession, an ecomorphological study. In: J. White (ed.), The Population Structure of Vegetation. Dr W. Junk Publishers, Dordrecht. pp. 637–666.CrossRefGoogle Scholar
  16. Jakab, S. 1972. Observaþii pedogeografice i pedomorfologice în Cîmpia Transilvaniei (Pedogeographic and pedomorphogenetic observations in the Transylvanian Plain). Ştinþa Solului 10:55–69.Google Scholar
  17. Kovács-Láng, E., Gy. Kröel-Dulay, M. Kertész, G. Fekete, S. Bartha, J. Mika, I. Dobi-Wantuch, T. Rédei, K. Rajkai and I. Hahn. 2000. Changes in the composition of sand grasslands along a climatic gradient in Hungary and implications for climate change. Phytocoenologia 30:385–407.CrossRefGoogle Scholar
  18. Kullback, S. 1959. Information Theory and Statistics. John Wiley and Sons, New York.Google Scholar
  19. Kun, A., E. Ruprecht and A. Szabó. 2004. Az Erdélyi-medence bio-klimatológiai jellemzése (The bioclimatological characteristics of the Transylvanian Basin (Romania)). Múzeumi Füzetek 13:63–81.Google Scholar
  20. Lawton, J. H. 1987. Are there assembly rules for successional communities? In: A. J. Gray, M. J. Crawley and P. J. Edwards (eds.), Colonization, Succession and Stability. Blackwell Scientific Publications, Oxford. pp. 225–244.Google Scholar
  21. Legendre, P. and L. Legendre. 1998. Numerical Ecology, 2nd English edition. Elsevier, Amsterdam, The Netherland.Google Scholar
  22. Lepš, J. and V. Buriánek 1990. Interspecific associations in old-field succession. In: F. Krahulec, A. D. Q. Agnew, S. Agnew and J. H. Willems (eds.), Spatial Processes in Plant Communities. SPB Academic Publisher, The Hague. pp. 31–47.Google Scholar
  23. Lockwood, J. L. 1997. An alternative to succession: Assembly rules offer guide to restoration efforts. Restoration & Management Notes 15:45–50.Google Scholar
  24. Margalef, R. 1963. On certain unifying principles in ecology. Am. Nat. 97:357–374.CrossRefGoogle Scholar
  25. Margalef, R. 1968. Perspectives in Ecological Theory. University of Chicago Press, Chicago, Illinois.Google Scholar
  26. Myster, R. W. and S. T. A. Pickett. 1992. Dynamics of associations between plants in ten old fields during 31 years of succession. J. Ecol. 80:291–302.CrossRefGoogle Scholar
  27. O’Connor, I. and L. W. Aarssen. 1987. Species association patterns in abandoned sand quarries. Vegetatio 73:101–109.CrossRefGoogle Scholar
  28. Osbornová, J., M. Kováøová, J. Lepš and K. Prach (eds.). 1990. Succession in Abandoned Fields. Studies in Central Bohemia, Czechoslovakia. Kluwer Academic Publishers, Dordrecht.Google Scholar
  29. Palmer, M. W. and E. van der Maarel. 1995. Variance in species richness, species association, and niche limitation. Oikos 73:203–213.CrossRefGoogle Scholar
  30. Peet, R. K. 1992. Community structure and ecosystem function. In: D. C. Glenn-Levin, R. K. Peet and T. T. Veblen (eds.), Plant succession: Theory and Prediction. Chapman & Hall, London. pp. 103–151.Google Scholar
  31. Pickett, S. T. A., M. L. Cadenasso and S. Bartha. 2001. Implications from the Buell-Small Succession Study for vegetation restoration. Appl. Veg. Sci. 4:41–52.CrossRefGoogle Scholar
  32. Podani, J. 1987. Computerized sampling in vegetation studies. Coenoses 2:9–18.Google Scholar
  33. Podani, J.,T. Czárán and S. Bartha. 1993. Pattern, area and diversity: the importance of spatial scale in species assemblages. Abstracta Botanica 17:37–51.Google Scholar
  34. Rice, W. R. 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ruprecht, E. 2005. Secondary succession on old-fields in the Transylvanian Lowland (Romania). Preslia 77:145–157.Google Scholar
  36. Temperton, V. M., R. J. Hobbs, T. Nuttle and S. Halle. 2004. Assembly Rules and Restoration Ecology. Bridging the Gap between Theory and Practice. Island Press, Washington.Google Scholar
  37. Tilman, D. 1988. Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press, USA, New Jersey.Google Scholar
  38. Várallyay, Gy. 1993. Soils in the region between the rivers Danube and Tisza (Hungary). In: J. Szujkó-Lacza and D. Kováts (eds.), The Flora of the Kiskunság National Park. Hungarian Natural History Museum. pp. 21–42.Google Scholar
  39. Verhoeven, K. J. F., K. L. Simonsen and L. M. McIntyre. 2005. Implementing false discovery rate control: increasing your power. Oikos 108:643–647.CrossRefGoogle Scholar
  40. Vitousek, P. M. and L. R. Walker. 1987. Colonization, succession and resource availability: ecosystem-level interactions. In: A. J. Gray, M. J. Crawley and P. J. Edwards (eds.), Colonization, Succession and Stability Blackwell, Oxford. pp. 315–339.Google Scholar
  41. Watkins, A. J. and J. B. Wilson. 1992. Fine-scale community structure of lawns. J. Ecol. 80:15–24.CrossRefGoogle Scholar
  42. Watkins, A. J. and J. B. Wilson. 2003. Local texture convergence: a new approach to seeking assembly rules. Oikos 102:525–532.CrossRefGoogle Scholar
  43. Weiher, E., G. D. P. Clarke and P. A. Keddy. 1998. Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos 81:309–322.CrossRefGoogle Scholar
  44. Wiens, J. A. 1989. Spatial scaling in ecology. Funct. Ecol. 3:385–397.CrossRefGoogle Scholar
  45. Wilson, J. B. and H. Gitay. 1995. Limitations to species coexistence: evidence for competition from field observations, using a patch model. J. Veg. Sci. 6:369–376.CrossRefGoogle Scholar
  46. Wilson, J. B. and R. J. Whittaker. 1995. Assembly rules demonstrated in a saltmarsh community. J. Ecol. 83:801–807.CrossRefGoogle Scholar
  47. Wilson, J. B., M. T. Sykes and R. K. Peet. 1995. Time and space in the community structure of a species-rich limestone grassland. J. Veg. Sci. 6:729–740.CrossRefGoogle Scholar
  48. Zobel, M. 1992. Plant species coexistence – the role of historical, evolutionary and ecological factors. Oikos 65:314–320.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • E. Ruprecht
    • 1
    Email author
  • S. Bartha
    • 2
  • Z. Botta-Dukát
    • 2
  • A. Szabó
    • 1
  1. 1.Department of Taxonomy and EcologyBabeş-Bolyai UniversityCluj NapocaRomania
  2. 2.Institute of Ecology and Botany of the Hungarian Academy of SciencesVácrátótHungary

Personalised recommendations