Advertisement

Community Ecology

, Volume 8, Issue 1, pp 119–127 | Cite as

Multi-stage cluster sampling for estimating average species richness at different spatial grains

  • F. Baffetta
  • G. BacaroEmail author
  • L. Fattorini
  • D. Rocchini
  • A. Chiarucci
Article

Abstract

A multi-stage cluster sampling is proposed for quantifying and monitoring plant species richness at multiple spatial grains over large spatial extents. An unbiased estimator of average species richness at different grains and a conservative estimator of its sampling variance are obtained in a complete design-based framework, i.e., avoiding any assumption about the ecological community under study. An application to the Nature Reserve “Lago di Montepulciano” demonstrates that the proposed strategy may accomplish practical advantages and quite satisfactory levels of accuracy.

Keywords

Biodiversity monitoring Design-based inference Horvitz-Thompson estimation Variance estimation 

Abbreviations

MP

Macroplot

PL

Plot

SP

Subplot

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angiolini, C., F. Casini, E. Lorenzini and V. De Dominicis. (in preparation). Analisi della vegetazione e applicazione di metodi per valutare la naturalità di ambienti umidi artificiali nella Riserva Naturale Lago di Montepulciano (SI, Italia Centrale).Google Scholar
  2. Araújo, M.B., P.J. Densham and P.H. Williams. 2004. Representing species in reserves from patterns of assemblage diversity. J. Biogeogr. 31: 1037–1050.CrossRefGoogle Scholar
  3. Arrhenius, O. 1921. Species and area. J. Ecol. 9: 95–99.CrossRefGoogle Scholar
  4. Barnet, D. and T.J. Stohlgren. 2003. A nested intensity sampling design for plant diversity. Biodiversity and Conservation 9: 67–86.Google Scholar
  5. Barabesi, L. and L. Fattorini. 1998. The use of replicated plot, line and point sampling for estimating species abundances and ecological diversity. Environmental and Ecological Statistics 5: 353–370.CrossRefGoogle Scholar
  6. Bassett, S.D. and T.C.Jr. Edwards. 2003. Effectof different sampling schemes on the spatial placement of conservation reserves in Utah, USA. Biol. Conserv. 113: 141–151.CrossRefGoogle Scholar
  7. Bunge, J. and M. Fitzpatrick. 1993. Estimating the number of species: a review. J. Amer. Stat. Assoc. 88: 364–373.Google Scholar
  8. Colwell, R.K. and J.A. Coddington. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London, Series B 345: 101–118.CrossRefGoogle Scholar
  9. Connor, E.F. and E.D. McCoy. 1979. The statistics and biology of the species-area relationship. Am. Nat. 113: 791–833.CrossRefGoogle Scholar
  10. Cowling, R.M., R.L. Pressey, R. Sims-Castley, A. le Roux, E. Baard, C.J. Burgers and G. Palmer. 2003. The expert or the algorithm?—comparison of priority conservation areas in the Cape Floristic Region identified by park managers and reserve selection software. Biol. Conserv. 112: 147–167.CrossRefGoogle Scholar
  11. De Vries, P.G. 1986. Sampling Theory for Forest Inventories. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  12. Dungan, J.L., J.N. Perry, M.R.T. Dale, P. Legendre, S. Citron-Pousty, M.-J. Fortin, A. Jakomulska, M. Miriti and M. S. Rosemberg. 2002. A balanced view of scale in spatial statistical analysis. Ecography 25: 626–640.CrossRefGoogle Scholar
  13. Ferretti, M. and A. Chiarucci. 2003. Design concepts adopted in long-term forest monitoring programs in Europe—problems for the future? The Science of The Total Environment 310: 171–178.CrossRefGoogle Scholar
  14. Gao, J. 2006. Quantification of grassland properties: how it can benefit from geoinformatic technologies? International Journal of Remote Sensing 27: 1351–1365.CrossRefGoogle Scholar
  15. Gleason, H.A. 1922. On the relation between species and area. Ecology 3: 158–162.CrossRefGoogle Scholar
  16. Godfray, H.C.J. and J.H. Lawton. 2001. Scale and species numbers. Trends in Ecol. Evol. 16: 400–404.CrossRefGoogle Scholar
  17. Goodambe, V.P. 1955. A unified theory of sampling from finite population. J. Royal Stat. Soc. B 17: 269–278.Google Scholar
  18. Gregoire, T.G. 1998. Design-based and model-based inference in survey sampling: appreciating the difference. Can. J. Forest Research 28: 1429–1447.CrossRefGoogle Scholar
  19. Harte J., A. Kinzig and J. Green. 1999a. Self-similarity in the distribution and abundance of species. Science 284: 334–336.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Harte J., S. McCarthy, K. Taylor, A. Kinzig and M.L. Fischer. 1999b. Estimating species-area relationships from plot to land-scape scale using species spatial-turnover data. Oikos 86: 45–54.CrossRefGoogle Scholar
  21. Hedayat, A.S. and B.K. Sinha. 1991. Design and Inference in Finite Population Sampling. Wiley, New York.Google Scholar
  22. Hortal, J., P.A.V. Borges and C. Gaspar. 2006. Evaluating the performance of species richness estimators: sensitivity to sample grain size. J. Animal Ecol. 75: 274–287.CrossRefGoogle Scholar
  23. Keeley J.E. and C.J. Fotheringham. 2005. Plot shape effects on plant species diversity measurements. J. Veg. Sci. 16: 249–256.CrossRefGoogle Scholar
  24. Kenkel, N. C., P. Juhász-Nagy and J. Podani. 1989. On sampling procedures in population and community ecology. Vegetatio 83: 195–207.CrossRefGoogle Scholar
  25. Legg, C. J. and L. Nagy. 2006. Why most conservation monitoring is, but need not be, a waste of time. Journal of Environmental Management 78: 194–199.CrossRefPubMedGoogle Scholar
  26. Liu, Q. 1995. A model for species diversity monitoring at community level and its applications. Environmental Monitoring and Assessment 34: 271–287.CrossRefGoogle Scholar
  27. Mann, C.C. 1991. Extinction: are ecologists crying wolf? Science 253: 709–824.CrossRefGoogle Scholar
  28. Palmer, M.W. 1995. How should one count species? Natural Areas Journal 15: 124–135.Google Scholar
  29. Palmer, M.W. and P.S. White. 1994. Scale dependence and the species-area relationship. Am. Nat. 144: 717–740.CrossRefGoogle Scholar
  30. Palmer, M.W., P.G. Earls, B.W. Hoagland, P.S. White and T. Wohlgemuth. 2002. Quantitative tools for perfecting species lists. Environmetrics 13: 121–137.CrossRefGoogle Scholar
  31. Peet, R.K., T.R. Wentworth and P.S. White. 1998. A flexible, multipurpose method for recording vegetation composition and structure. Castanea 63: 262–274.Google Scholar
  32. Polasky, S., J.D. Camm, A.R. Solow, B. Csuti, D. White and R. Ding. 2000. Choosing reserve networks with incomplete species information. Biol. Conserv. 94: 1–10.CrossRefGoogle Scholar
  33. Read, J.M., D.B. Clark, E.M. Venticinque and M.P. Moreira. 2003. Application of merged 1-m and 4-m resolution satellite data to research and management in tropical forests. J. Appl. Ecol. 40: 592–600.CrossRefGoogle Scholar
  34. Rodrigues, A.S.L. and K.J. Gaston. 2002. Optimisation in reserve selection procedures: why not? Biol. Conserv. 107: 123–129.CrossRefGoogle Scholar
  35. Rodrigues, A.S.L., S.J. Andelman, M.I. Bakarr, L. Boitani, T.M. Brooks, R.M. Cowling, L.D.C. Fishpool, G.A.B. da Fonseca, K.J. Gaston, M. Hoffmann, J.S. Long, P.A. Marquet, J.D. Pilgrim, R.L. Pressey, J. Schipper, W. Sechrest, S.N. Stuart, L.G. Underhill, R.W. Waller, M.E.J. Watts and X. Yan. 2004. Effectiveness of the global protected area network in representing species diversity. Nature 428: 640–643.CrossRefGoogle Scholar
  36. Rothley, K.D. and C. Rae. 2005. Working backwards to move forwards: Graph-based connectivity metrics for reserve network selection. Environmental Modelling and Assessment 10: 107–113.CrossRefGoogle Scholar
  37. Sarndal, C.E., B. Swensson, and J. Wretman. 1992. Model Assisted Survey Sampling. Springer, New York.CrossRefGoogle Scholar
  38. Scheiner, S.M., S.B. Cox, M.R. Willig, G.G. Mittelbach, C. Osenberg and M. Kaspari. 2000. Species richness, species-area curves, and Simpson’s paradox. Evolutionary Ecology Research 2: 791–802.Google Scholar
  39. Shmida, A. 1984. Whittaker’s plant diversity sampling method. Israel J. Bot. 33: 41–46.Google Scholar
  40. Stohlgren, T.J., M.B. Falkner and L.D. Schell. 1995. A modified-Whittaker nested vegetation sampling method. Vegetatio 117: 113–121.CrossRefGoogle Scholar
  41. Stohlgren, T.J., A. Owen and M. Lee. 2000. Monitoring shifts in plant diversity in response to climate change: a method for land-scapes. Biodiversity and Conservation 12: 255–278.Google Scholar
  42. Thompson, S.K. 1992. Sampling. Wiley, New York.Google Scholar
  43. Ugland, K.I, J.S. Gray and K.E. Ellingsen. 2003. The species-accumulation curve and estimation of species richness. J. Animal Ecol. 72:888–897.CrossRefGoogle Scholar
  44. Whittaker, R.H. 1972. Evolution and measurement of species diversity. Taxon 21: 213–251.Google Scholar
  45. Wolter, K.M. 1985. Introduction to Variance Estimation. Springer, New York.Google Scholar
  46. Yoccoz, N.G., J.D. Nichols and T. Boulinier. 2001. Monitoring of biological diversity in space and time. Trends in Ecol. Evol. 16: 446–453.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • F. Baffetta
    • 1
  • G. Bacaro
    • 2
    • 3
    Email author
  • L. Fattorini
    • 1
  • D. Rocchini
    • 2
    • 3
  • A. Chiarucci
    • 2
    • 3
  1. 1.Dipartimento di Metodi QuantitativiUniversità di SienaSienaItaly
  2. 2.Dipartimento di Scienze Ambientali “G. Sarfatti”Università di SienaSienaItaly
  3. 3.TerraData s.r.l. environmetricsSienaItaly

Personalised recommendations