Advertisement

Community Ecology

, Volume 8, Issue 1, pp 111–117 | Cite as

Response of a subalpine grassland to simulated grazing: aboveground productivity along soil phosphorus gradients

  • C. Thiel-Egenter
  • A. C. RischEmail author
  • M. F. Jurgensen
  • D. S. Page-Dumroese
  • B. O. Krüsi
  • M. Schütz
Article

Abstract

Interactions between grassland ecosystems and vertebrate herbivores are critical for a better understanding of ecosystem processes, but diverge widely in different ecosystems. In this study, we examined plant responses to simulated red deer (Cervus elaphus L.) grazing using clip-plot experiments in a subalpine grassland ecosystem of the Central European Alps. We measured aboveground net primary production (ANPP) and phosphorus (P) concentration of leaf tissue from plants of two vegetation types with different grazing history. The experimental plots were placed on a soil-P gradient and subject to two different clipping treatments, which simulated moderate and heavy grazing, respectively. We found distinct differences in the response of both ANPP and P concentration in leaf tissues in the two vegetation types. Compared to moderate, heavy grazing simulation did not affect ANPP in the vegetation type adapted to grazing, but decreased ANPP in the non-grazing adapted vegetation type. High soil-P levels also had different effects on the response of the vegetation to clipping in the two vegetation types with different grazing history. ANPP correlated positively with soil-P in non-grazing adapted tall-grass vegetation, while in grazing adapted short-grass vegetation a positive relationship between soil-P and the P concentration in leaf tissues was found. Our experiments provide data for a better understanding of ecosystem processes in high-elevation grasslands of the Alps with possible implications for both nature conservation purposes in protected areas and the management of agriculturally used grasslands.

Keywords

Cervus elaphus Grazing history Grazing pattern High elevation Primary production Swiss National Park 

Abbreviations

ANPP

aboveground net primary production

SNP

Swiss National Park

Leaf-P

phosphorus concentration of leaf tissue

soil-P

phosphorus concentration in the top 10 cm of the mineral soil.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aeschimann, D. and C. Heitz. 1996. Synonymie-Index der Schweizer Flora und der angrenzenden Gebiete. CRSF, Genève.Google Scholar
  2. Achermann, G. 2000. The influence of red deer (Cervus elaphus L.) upon a subalpine ecosystem in the Swiss National Park. PhD Thesis, ETH 13479, Zürich, Switzerland.Google Scholar
  3. Bardgett, R. D. and D. A. Wardle. 2003. Herbivore-mediated link-ages between aboveground and belowground communities. Ecology 84: 2258–2268.CrossRefGoogle Scholar
  4. Beaulieu, J., J. Gauthier and L. Rochefort. 1996. The growth response of graminoid plants to goose grazing in high arctic environment. J. Ecol. 84: 905–1014.CrossRefGoogle Scholar
  5. Blankenhorn, H. J., C. Buchli, P. Voser and C. Berger. 1979. Bericht zum Hirschproblem im Engadin und im Münstertal. Eidgenös-sisches Oberforstinspektorat, Bern.Google Scholar
  6. Braun-Blanquet, J., S. Brunies, E. Campell, E. Frey, H. Jenny, C. Meylan and H. Pallmann. 1931. Vegetationsentwicklung im Schweizerischen Nationalpark. Ergebnisse der Untersuchung von Dauerbeobachtungsflächen. Jahresbericht der Naturfor-schenden Gesellschaft Graubündens 69: 3–82.Google Scholar
  7. Charles, W. N., D. McCowan and K. East. 1977. Selection of upland swards by red deer (Cervus elaphus L.) on Rhum. J. Appl. Ecol. 14: 55–64.CrossRefGoogle Scholar
  8. Clutton-Brock, T. H., G. R. Iason, S. D. Albon and F.E. Guiness. 1982. Effects of lactation on feeding behaviour and habitat use in wild red deer hinds. J. Zool. 198: 227–236.CrossRefGoogle Scholar
  9. Clutton-Brock, T. H., G. R. Iason and F. E. Guiness. 1987. Sexual segregation and density-related changes in habitat use in male and female red deer (Cervus elaphus L.). J. Zool. 211: 275–289.CrossRefGoogle Scholar
  10. Collins, S. L., A. K. Knapp, J. M. Briggs, J. M. Blair and E. M. Steinauer. 1998. Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 280: 745–747.CrossRefPubMedGoogle Scholar
  11. Detling, J. K. 1988. Grasslands and savanna: regulation of energy flow and nutrient cycling by herbivores. Ecol. Stud. 67: 131–148.CrossRefGoogle Scholar
  12. Dietl, W. 1994. Bewirtschaftung der Alpweiden. In: P. Wäfler (ed.), Alpwirtschaft. LMZ, Zollikofen, pp. 20–33.Google Scholar
  13. Dyer, M. I., D. L. DeAngelis and W. M. Post. 1986: A model of herbivore feedback on plant productivity. Math. Biosci. 79: 171–184.CrossRefGoogle Scholar
  14. Fox, A. D., J. N. Kristiansen, D. A. Stroud and H. Boyd. 1998. The effects of simulated spring goose grazing on the rate and protein content of Phleum pratense leaves. Oecologia 116: 154–159.CrossRefPubMedGoogle Scholar
  15. Frank, D. A. and S. J. McNaughton. 1993. Evidence for the promotion of aboveground grassland production by native large herbivores in Yellowstone National Park. Oecologia 96: 157–161.CrossRefGoogle Scholar
  16. Frank, D. A. and R. D. Evans. 1997. Effect of native grazersongrass-land N cycling in Yellowstone National Park. Ecology 78: 2238–2248.CrossRefGoogle Scholar
  17. Frank, D. A., S. J. McNaughton and B. F. Tracy. 1998. The ecology of the earth’s grazing ecosystem. Bioscience 48: 513–521.CrossRefGoogle Scholar
  18. Frank, D. A., M. M. Kuns and R. Guido. 2002. Consumer control of grassland plant production. Ecology 83: 602–606.CrossRefGoogle Scholar
  19. Georgiadis, N. J., R. W. Ruess, S. J. McNaughton and D. Western. 1989. Ecological conditions that determine when grazing stimulates grass production. Oecologia 81: 316–322.CrossRefPubMedGoogle Scholar
  20. Gordon, I. J. 1989. Vegetation community selection by ungulates on the isle of Rhum. II. Vegetation community selection. J. Appl. Ecol. 26: 53–64.CrossRefGoogle Scholar
  21. Gough, L. and J. B. Grace. 1998. Herbivore effects on plant species density at varying productivity levels. Ecology 79: 1586–1594.CrossRefGoogle Scholar
  22. Haller H. 2002. Der Rothirsch im Schweizerischen Nationalpark und dessen Umgebung. Nationalpark-Forschung in der Schweiz 91: 3–140.Google Scholar
  23. Hamilton, E. W., M. S. Giovanni., S. A. Moses, J. S. Coleman and S. J. McNaughton. 1998. Biomass and mineral element responses of a Serengeti short-grass species to nitrogen supply and defoliation: compensation requires a critical [N]. Oecologia 116: 407–418.CrossRefGoogle Scholar
  24. Hik, D. S. and R. L. Jefferies. 1990. Increases in the net above-ground primary production of a salt marsh forage grass: A test of the predictions of the herbivore-optimization model. J. Ecol. 78: 180–195.CrossRefGoogle Scholar
  25. Hilal, M. H., F. Anter and A. H. El-Damaty. 1973. A chemical and biological approach towards the definition of calcareous soils. I. Movement and retention of P12 in soils as affected by percentage and particle size of calcium carbonate fraction. Plant Soil 39: 469–478.CrossRefGoogle Scholar
  26. Hobbs, N. T. 1996. Modification of ecosystems by ungulates. J. Wildl. Manage. 60: 695–713.CrossRefGoogle Scholar
  27. Holland, E. A. and J. K. Detling. 1990. Plant response to herbivory and belowground nitrogen cycling. Ecology 71: 1040–1049.CrossRefGoogle Scholar
  28. Holland, E. A., W. J. Parton, J. K. Detling and D. L. Coppock. 1992. Physiological responses of plant populations to herbivory and their consequences for ecosystem nutrient flow. Am. Nat. 140: 685–706.CrossRefPubMedGoogle Scholar
  29. Knapp, A. K., J. M. Blair, J. M. Briggs, S. L. Collins, D. C. Hartnett, L. C. Johnson and E. G. Towne. 1999. The keystone role of bison in North American tallgrass prairie. Bioscience 49: 39–50.CrossRefGoogle Scholar
  30. Loreau, M. 1995: Consumers as maximizers of mater and energy flow by grazing. Am. Nat. 145: 22–42.CrossRefGoogle Scholar
  31. McNaughton, S. J. 1976. Serengeti migratory wildebeest: Facilitation of energy flow by grazing. Science 191: 92–94.CrossRefPubMedGoogle Scholar
  32. McNaughton, S. J. 1979. Grazing as an optimization process: Grass-ungulate relationships in the Serengeti. Am. Nat. 113: 691–703.CrossRefGoogle Scholar
  33. McNaughton, S. J. 1985. Ecology of a grazing ecosystem: the Serengeti. Ecol. Monogr. 55: 259–294.CrossRefGoogle Scholar
  34. McNaughton, S. J. 1993. Grasses and grazers, science and management. Ecol. Appl. 3: 17–20.CrossRefPubMedGoogle Scholar
  35. McNaughton, S. J., F. F. Banyikwa and M. M. McNaughton. 1997. Promotion of the cycling of diet-enhancing nutrients by African grazers. Science 278: 1798–1800.CrossRefPubMedGoogle Scholar
  36. Moss, R., D. Welch and P. Rothery. 1981. Effects of grazing by mountain hares and red deer on the production and chemical composition of heather. J. Appl. Ecol. 18: 487–496.CrossRefGoogle Scholar
  37. Osborne, B. C. 1984. Habitatuseby red deer (Cervus elaphus L.) and hill sheep in the West Highlands. J. Appl. Ecol. 21: 497–506.CrossRefGoogle Scholar
  38. Pandey, C. B. and J. S. Singh. 1992. Rainfall and grazing effects on net primary productivity in a tropical savanna, India. Ecology 73: 2007–2021.CrossRefGoogle Scholar
  39. Parolini, J. D. 1995. Zur Geschichte der Waldnutzung im Gebiet des heutigen Nationalparks. PhD Thesis, ETH 11187, Zürich, Switzerland.Google Scholar
  40. Petrak, M. 1982. Etho-ökologische Untersuchungen an einer Rothirschpopulation (Cervus elaphus L.) der Eifel unterbeson-derer Berücksichtigung der stoffwechselbedingten Verhaltens. Wildbiologie und Jagdwissenschafften 10: 1–196.Google Scholar
  41. Post, E. S. and D. R. Klein. 1996. Relationship between graminoid growth form and levels of grazing by caribou (Rangifer tarandus) in Alaska. Oecologia 107: 364–372.CrossRefPubMedGoogle Scholar
  42. Raillard, M. C. and J. Svoboda. 1999. Exact growth and increased nitrogen compensation by the arctic sedge Carex aquatilits var, Stans after simulated grazing. Arctic, Antarctic, Alpine Research 31: 21–26.CrossRefGoogle Scholar
  43. Risch, A. C. and D. A. Frank. 2006. Carbon dioxide fluxes in a spatially and temporally heterogeneous temperate grassland. Oecologia 147: 291–302.CrossRefPubMedGoogle Scholar
  44. Schorta, A. 1988. Vez l’alp da Grimmels. Istorgia da las alps da Zernez. Octopus, Chur, Switzerland.Google Scholar
  45. Seagle, S. W., S. J. McNaughton and R. W. Ruess. 1992. Simulated effects of grazing on soil nitrogen and mineralization in contrasting Serengeti grasslands. Ecology 73: 1105–1123.CrossRefGoogle Scholar
  46. Schütz, M., A. C. Risch, E. Leuzinger, B. O. Krüsi and G. Acher-mann. 2003. Impact of herbivory by red deer (Cervus elaphus L.) on patterns and processes in subalpine grasslands in the Swiss National Park. Forest Ecol. Manage. 181: 177–187.CrossRefGoogle Scholar
  47. Schütz, M., A. C. Risch, G. Achermann, C. Thiel-Egenter,D. S. Page Dumroese, M. F. Jurgensen and P. J. Edwards. 2006. Phosphorus translocation by red deer on a subalpine grassland in the Central European Alps. Ecosystems 9: 624–633.CrossRefGoogle Scholar
  48. Stebbins, G. L. 1981. Coevolution of grasses and herbivores. Annales Missouri Botanical Garden 68: 75–86.CrossRefGoogle Scholar
  49. Suter, W., U. Suter, B. O. Krüsi and M. Schütz. 2004. Spatial variation of summer diet of red deer Cervus elaphus in the eastern Swiss Alps. Wildlife Biology 10, 43–50.CrossRefGoogle Scholar
  50. Trümpy, R., S. M. Schmid, P. Conti and N. Froitzheim. 1997. Er-läuterungen zur geologischen Karte 1:50 000 des Schweizeris-chen Nationalparks. Nationalparkforschung in der Schweiz 87: 1–40.Google Scholar
  51. Turner, C. L., T. R. Seastedt and M. I. Dyer. 1993. Maximization of aboveground grassland production: The role of defoliation frequency, intensity, and history. Ecol. Appl. 3: 175–186.CrossRefPubMedGoogle Scholar
  52. Virtanen, R., G. R. Edwards and M. J. Crawley. 2002. Red deer management on the Isle of Rum. J. Appl. Ecol. 39: 572–583.CrossRefGoogle Scholar
  53. Zarcinas, B. A., B. Cartwright and L. R. Spouncer. 1987. Nitric acid digestion and multi element analysis of plant material by inductively coupled plasma spectrometry. Communications in Soil Science and Plant Analysis 18: 131–146.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • C. Thiel-Egenter
    • 1
  • A. C. Risch
    • 1
    Email author
  • M. F. Jurgensen
    • 2
  • D. S. Page-Dumroese
    • 3
  • B. O. Krüsi
    • 4
  • M. Schütz
    • 1
  1. 1.Swiss Federal Institute for ForestSnow and Landscape ResearchBirmensdorfSwitzerland
  2. 2.Michigan Technological UniversitySchool of Forest Resources and Environmental ScienceHoughtonUSA
  3. 3.USDA Forest ServiceRocky Mountain Research StationMoscowUSA
  4. 4.University of Applied Sciences WaedenswilWaedenswilSwitzerland

Personalised recommendations