Advertisement

Community Ecology

, Volume 8, Issue 1, pp 103–109 | Cite as

Is plant biodiversity driven by decomposition processes? An emerging new theory on plant diversity

  • S. MazzoleniEmail author
  • G. Bonanomi
  • F. Giannino
  • M. Rietkerk
  • S. C. Dekker
  • F. Zucconi
Article

Abstract

Diversity of forest trees ranges from monospecific stands to the astonishing richness of tierra firma tropical forests. Such patterns are observed along gradients of latitude, altitude, soil fertility and rainfall. So far, the proposed coexisting mechanisms do not provide a comprehensive and unequivocal explanation of these patterns at the community level. We propose a new theory linking species diversity with organic matter cycle and negative plant-soil feedback induced by litter autotoxicity. This approach focuses on resource-waste rather than resource-only dynamics. High diversity does occur where litter decomposition is rapid and ecosystem nutrient cycles are closed. On the other hand, single species dominance is found where litter decomposition is slow and/or autotoxicity is removed from the nutrient cycle pathway. Unlike previous theoretical views, the one we present proves potentially capable of explaining differences in species diversity both along environmental gradients and within the tropics.

Keywords

Allelopathy Environmental gradient Forest tree diversity Intraspecific competition Litter Monospecific stand Phytotoxicity Plant-soil negative feedback 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aerts, R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449.CrossRefGoogle Scholar
  2. Armstrong, J. and W. Armstrong. 2001. An overview of the effects of phytotoxins on Phragmites australis in relation to die-back. Aquatic Botany 69:251–268.CrossRefGoogle Scholar
  3. Berendse, F. 1994. Litter decomposability – a neglected compound of plant fitness. J. Ecol. 82:187–190.CrossRefGoogle Scholar
  4. Berg, B. and C. McClaugherty. 2003. Plant litter: decomposition, humus formation, carbon sequestration. Springer-Verlag, Berlin, Germany.CrossRefGoogle Scholar
  5. Bertness, M.D. and G.H. Leonard. 1997. The role of positive interactions in communities: lesson from intertidal habitats. Ecology 78:1976–1989.CrossRefGoogle Scholar
  6. Bever, J.D., M. Westover and J. Antonovics. 1997. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J. Ecol. 85:561–573.CrossRefGoogle Scholar
  7. Bever, J.D. 1994. Feedback between plants and their soil communities in an old field community. Ecology 75:1965–1977.Google Scholar
  8. Blum, U., S.R. Shafer and M.E. Lehman. 1999. Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs an experimental model. Critical Reviews in Plant Science 18:673–693.CrossRefGoogle Scholar
  9. Bonanomi, G. and S. Mazzoleni. 2005. Soil history affects plant growth and competitive ability in herbaceous species. Community Ecol. 6:23–28.CrossRefGoogle Scholar
  10. Bonanomi, G., F. Giannino and S. Mazzoleni. 2005a. Negative plant-soil feedback and species coexistence. Oikos 111:311–321.CrossRefGoogle Scholar
  11. Bonanomi, G., M. Rietkerk, S.C. Dekker and S. Mazzoleni. 2005b. Negative plant-soil feedback and positive species interaction in a herbaceous plant community. Plant. Ecol. 181:269–278.CrossRefGoogle Scholar
  12. Bonanomi, G., M.G. Sicurezza, S. Caporaso, A. Esposito and S. Mazzoleni. 2006. Phytotoxicity dynamics of decaying plant materials. New Phytol. 169:571–578.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chesson, P. 2000. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31:343–366.CrossRefGoogle Scholar
  14. Conn, C. and J. Dighton 2000. Litter quality influences on decomposition, ectomycorrhizal community structure and mycorrhizal root surface acid phosphatase activity. Soil Biology and Biochemistry 32:489–496.CrossRefGoogle Scholar
  15. Connell, J.H. 1978. Diversity in tropical rain forest and coral reefs. Science 199:1302–1310.CrossRefGoogle Scholar
  16. Darwin C. 1862. The Voyage of the Beagle. Doubleday, Garden City, NJ.Google Scholar
  17. De Rooij-van Der Goes, P.C.E.M. 1995. The role of plant-parasitic nematodes and soil-borne fungi in the decline of Ammophila arenaria L. Link. New Phytol. 129:661–669.CrossRefGoogle Scholar
  18. Ehrenfeld, J.G., B. Ravit and K. Elgersma. 2005. Feedback in the plant–soil system. Annual Review of Environment and Resources 30:75–115.CrossRefGoogle Scholar
  19. Fierer, N., J.M. Craine, K. McLauchlan and J.P. Shimel 2005. Litter quality and the temperature sensitivity of decomposition. Ecology 86:320–326.CrossRefGoogle Scholar
  20. Gartner, T.B. and Z.G. Cardon. 2004. Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246.CrossRefGoogle Scholar
  21. Gholz, H.L., D.A. Wedin, S.M. Smitherman, M.E. Harmon and W.J. Parton. 2000. Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology 6:751–765.CrossRefGoogle Scholar
  22. Gillman, L.N. and S.D. Wright. 2006. The influence of productivity on the species richness of plants: a critical assessment. Ecology 87:1234–1243.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Givnish, T.J. 1999. On the causes of gradients in tropical tree diversity. J. Ecol. 87:193–210.CrossRefGoogle Scholar
  24. Harper, J.L. 1977. Population Biology of Plants. Academic Press, London, UK.Google Scholar
  25. Hättenschwiler, S., A.V. Tiunov and S. Scheu. 2005. Biodiversity and litter decomposition in terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 36:191–218.CrossRefGoogle Scholar
  26. Hodge, H. 2004. The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol. 162:9–24.CrossRefGoogle Scholar
  27. Hubbell, S.P. 2001. A Unified Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, New Jersey, USA.Google Scholar
  28. Huston, M.A. 1994. Biological Diversity: The Coexistence of Species on Changing Landscape. Cambridge Univ. Press.Google Scholar
  29. Hutchinson, G.E. 1958. Homage to Santa Rosalia, or why are there so many species of animals? Am. Nat. 93:145–159.CrossRefGoogle Scholar
  30. Inderjit and R.M. Callaway. 2003. Experimental designs for the study of allelopathy. Plant and Soil 256:1–11.CrossRefGoogle Scholar
  31. Jackson, R.B. and M.M. Caldwell. 1989. The timing and degree of root proliferation in fertile-soil microsites for three cold-desert perennials. Oecologia 81:149–153.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Janzen, D.H. 1970. Herbivores and the numbers of tree species in tropical forests. Am. Nat. 104:501–528.CrossRefGoogle Scholar
  33. Jordan, C.F. 1982. The nutrient balance of an Amazonian rain forest. Ecology 63:647–654.CrossRefGoogle Scholar
  34. Jordan, C.F. 1985. Nutrient cycling in tropical forest ecosystems: principles and their application in management and conservation. Wiley, Chichester.Google Scholar
  35. Kardol, P., N.J. Cornips, M.M.L. van Kempen, J.M.T. Bakx-Schot-man and W.H. van der Putten. 2007. Microbe-mediated plant-soil feedback causes historical contingency effects in plant community assembly. Ecol. Monog. 77: 147–162.CrossRefGoogle Scholar
  36. Kiers, E., C. Lovelock, E. Krueger, and E.A. Herre. 2000. Differential effects of tropical arbuscular mycorrhizal fungal inocula on root colonization and tree seedling growth: implications for tropical forest diversity. Ecology Letters 3:106–113.CrossRefGoogle Scholar
  37. Klironomos, J.N. 2002. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Makino, T, T. Takahashi, Y. Sakurai and M. Nanzyo. 1996. Influence of soil chemical properties on adsorption and oxidation of phenolic acids in soil suspension. Soil Science and Plant Nutrition 42:867–879.CrossRefGoogle Scholar
  39. McArthur, R.H. and E.O. Wilson. 1967. The theory of island biogeography. Princeton University Press, N.J.Google Scholar
  40. McNaughton, S.J. 1968. Autotoxic feedback in relation to germination and seedling growth in Typha latifolia. Ecology 49:367–369.CrossRefGoogle Scholar
  41. Miller, D.A. 1996. Allelopathy in forage crop system. Agron. J. 36:854–859.CrossRefGoogle Scholar
  42. Oremus, P.A.I. and H. Otten. 1981. Factors affecting growth and nodulation of Hippophae rhamnoides L. ssp. rhamnoides in soils from two successional stages of dune formation. Plant Soil 63:317–331.CrossRefGoogle Scholar
  43. Packer, A. and K. Clay. 2000. Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404:278–280.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Palmer, M.W. 1994. Variation in species richness: towards a unification of hypotheses. Folia Geobotanica et Phytotaxonomica 29:511–530.CrossRefGoogle Scholar
  45. Perry, L.G., G.C. Thelen, W.M. Ridenour, T.L. Weir, R.M. Callaway, M.W. Paschke and J.M. Vivanco. 2005. Dual role for an allelochemical: (±)-catechin from Centaurea maculosa root exudates regulates conspecific seedling establishment. J. Ecol. 93:1126–1135.CrossRefGoogle Scholar
  46. Ponnamperuma, F.N. 1972. The chemistry of submerged soils. Adv. Agron. 24:29–96.CrossRefGoogle Scholar
  47. Rice, E. L. 1984. Allelophaty. 2nd ed. Academic Press, London.Google Scholar
  48. Richards, P.W. 1996. The Tropical Rain Forest: An Ecological Study. 2nd edn. Cambridge Univ. Press, Cambridge.Google Scholar
  49. Singh, H.P., R.D. Batish and K.R. Kohli. 1999. Autotoxicity: concept, organisms and ecological significance. Crit. Rev. Plant. Sci. 18:757–772.CrossRefGoogle Scholar
  50. Streng, R.D., J.S. Glitzenstein and P.A. Harcombe. 1989. Woody seedling dynamics in an east Texas floodplain in forest. Ecol. Monogr. 59:177–204.CrossRefGoogle Scholar
  51. Tilman, D. 1994. Competition and biodiversity in spatially structured habitats. Ecology 75:2–16.CrossRefGoogle Scholar
  52. Valencia, R., H. Balslev and C.G. Paz y Miño. 1994. High tree alpha-diversity in Amazonian Ecuador. Biodiversity and Conservation 3:21–28.CrossRefGoogle Scholar
  53. Van der Putten, W.H. 2003. Plant defense belowground and spatiotemporal processes in natural vegetation. Ecology 84:2269–2280.CrossRefGoogle Scholar
  54. Van der Putten, W.H., C. Van Dijk and B.A.M. Peters. 1993. Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature 362:53–56.CrossRefGoogle Scholar
  55. Vitousek, P.M. and R.L. Jr. Sanford. 1986. Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Syst. 17: 137–167.CrossRefGoogle Scholar
  56. Waide, R.B., M.R. Willig, C.F. Steiner, G. Mittelbach, L. Gough, S.I. Dodson, G. Juday and R. Parmenter. 1999. The relationship between productivity and species richness. Annu. Rev. Ecol. Syst. 30:257–300.CrossRefGoogle Scholar
  57. Webb, L.J., J.G. Tracey and K.P. Haydock. 1967. A factor toxic to seedling of the same species associated with living roots of the non-gregarious subtropical rain forest tree Grevillea robusta. J. Appl Ecol 4:13–25.CrossRefGoogle Scholar
  58. Willig, M.R., D.M. Kaufman and R.D. Stevens. 2003. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu. Rev. Ecol Evol Syst. 34: 273–309.CrossRefGoogle Scholar
  59. Wills, C., R. Condit, R.B. Foster and S.P. Hubbell. 1997. Strong density-and diversity-related effects help to maintain tree species diversity in a neotropical forest. Proc. Natl Acad. Sci. U.S.A. 94:1252–1257.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Zucconi, F. 1996. Declino del suolo e stanchezza del terreno. Spazio Verde, Padova.Google Scholar
  61. Abdul-Wahab, A.S. and E.L. Rice. 1967. Plants inhibited by johnsograss and its possible significance in old-field succession. Bulletin of the Torrey Botanical Club 94:486–497.CrossRefGoogle Scholar
  62. Anaya, A.L. and S. del Amo. 1978. Allelopathic potential of Ambrosia cumanensis H.B.K. (Compositae) in a tropical zone of Mexico. Journal of Chemical Ecology 4:289–304.CrossRefGoogle Scholar
  63. Anderson, R.C. et al. 2002. Dieback of Acacia koa in Hawaii: ecological and pathological characteristics of affected stands. For. Ecol. Manage. 162:273–286.CrossRefGoogle Scholar
  64. Armstrong, J. and W. Armstrong. 2001. An overview of the effects of phytotoxins on Phragmites australis in relation to die-back. Aquatic Botany 69:251–268.CrossRefGoogle Scholar
  65. Arora, R.K. and R.K. Kohli. 1993. Autotoxic impact of essential oils extracted from Lantana camara L.. Biol. Plant. 35:293–297.CrossRefGoogle Scholar
  66. Ballegaard, T.K. and E. Warncke. 1985. Observation on autotoxic effects on seed germination and seedling growth in Cirsium palustre from a spring area in Jutland, Denmark. Holarctic Ecology 8:63–65.Google Scholar
  67. Bartelt-Ryser, J., et. al. 2005. Soil feedbacks of plant-diversity on soil microbial communities and subsequent plant growth. Perspect. Plant Ecol. 7:27–49.CrossRefGoogle Scholar
  68. Bevege, D.I. 1968. Inhibition of seedling hoop pine (Araucaria cunninghamii Ait.) on forest soils by phytotoxic substnces from the root zones of Pinus, Araucaria, and Flindersia. Plant and Soil 29:263–273.CrossRefGoogle Scholar
  69. Bever, J.D. 1994. Feedback between plants and their soil communities in an old field community. Ecology 75:1965–1977.CrossRefGoogle Scholar
  70. Bezemer, T.M. et al. 2006a. Plant species and functional group effects on abiotic and microbial soil properties and plant–soil feedback responses in two grasslands. J. Ecol. 94:893–904.CrossRefGoogle Scholar
  71. Bezemer, T.M. et al. 2006b. Interplay between Senecio jacobaea and plant, soil, and aboveground insect community composition. Ecology 87:2002–2013.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Bokhari, U.G. 1978. Allelopathy among praire grasses and its possible ecological significance. Annal. Botany 42:127–136.CrossRefGoogle Scholar
  73. Bonanomi, G. and M. Allegrezza. 2004. Effetti della colonizzazione di Brachypodium rupestre (Host) Roemer et. Schultes sulla diversità di alcune fitocenosi erbacee dell’Appennino centrale. Fitosociologia 41:51–69.Google Scholar
  74. Bonanomi, G. and S. Mazzoleni. 2005. Soil history affects plant growth and competitive ability in herbaceous species. Community Ecol. 6(1):23–28.CrossRefGoogle Scholar
  75. Bonanomi, G. et al. 2005a. Autoinhibition of germination and seedling establishment by leachate of Calluna vulgaris leaves and litter. Comm. Ecol. 2:203–208.CrossRefGoogle Scholar
  76. Bonanomi, G. et al. 2005b. Negative plant-soil feedback and positive species interaction in a herbaceous plant community. Plant. Ecol. 181:269–278.CrossRefGoogle Scholar
  77. Bonanomi, G. et al. 2007a. Islands of fertility can induce negative plant-soil feedback promoting coexistence. Plant Ecol. Submitted.Google Scholar
  78. Bonanomi, G. et al. 2007b. Plant-soil feedback effects on coexisting herbaceous species of Mediterranean macchia. In preparation.Google Scholar
  79. Bradow, J.M. et al. 1988. Seed-germination inhibition by volatile alcohols and other compounds associated with Amaranthus palmeri residues. Journal Chemical Ecology 14:1633–1648.CrossRefGoogle Scholar
  80. Callaway, R.M. et al. 2004. Soil biota and exotic plant invasion. Nature 427:731–733.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Canals, R.M. et al. 2005. Autotoxicity in Lolium rigidum: analyzing the role of chemically mediated interactions in annual plant populations. Journal of Theoretical Biology 235:402–407.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Castelli, J.P. and B.B. Casper. 2003. Intraspecific AM fungal variation contributes to plant-fungal feedback in a serpentine grassland. Ecology 84:323–336.CrossRefGoogle Scholar
  83. Casper, BB. and J.P. Castelli. 2007. Evaluating plant–soil feedback together with competition in a serpentine grassland. Ecology Letters doi: 10.1111/j.1461-0248.2007.01030.x.Google Scholar
  84. Chapin, S. et al. 1994. Mechanism of primary succession following deglaciation at Glacier Bay, Alaska. Ecol. Monogr. 64:149–175.CrossRefGoogle Scholar
  85. Chen, L.C. et al. 2005. Effects of phenolics on seedling growth and N-15 nitrate absoption of Cunninghamia lanceolata. Allelopathy J. 15:57–65.Google Scholar
  86. Chu-Chou, M. 1978. Effects of root residues on growth of Pinus radiata seedlings and a mycorrhizal fungus. Annual Appl. Biol. 90:407–416.CrossRefGoogle Scholar
  87. Curtis, J.T. and G. Cottam. 1950. Antibiotic and autotoxic effects in praire sunflower. Bulletin of the Torrey Botanical Club 77: 187–191.CrossRefGoogle Scholar
  88. Danin, A. 1996. Plants of desert dunes. Springer-Verlag, New York.CrossRefGoogle Scholar
  89. del Moral, R. and R.G. Cates. 1971. Allelophatic potential of the dominant vegetation of West Washington. Ecology 52:1030–1037.CrossRefGoogle Scholar
  90. Edwards, M.E., et al. 1988. Seed germination of American pokeweed (Phytolacca americana). I. Laboratory techniques and autotoxicity. American Journal of Botany 75:1794–1802.CrossRefGoogle Scholar
  91. Ervin, G.N. and R.G. Wetzel. 2000. Allelochemical autotoxicity in the emergent wetland macrophyte Juncus effusus (Juncaceae). American Journal of Botany 87:853–860.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Florence, R.G. 1965. Decline of old-growth redwood forests in relation to some soil microbiological process. Ecology 46:52–64.CrossRefGoogle Scholar
  93. Florence, R.G. and R.L. Crocker. 1962. Analysis of blackbutt (Eucalyptus pilularis) seedling growth in a blackbutt forest soil. Ecology 43:670–679.CrossRefGoogle Scholar
  94. Friedman, J. et al. 1982. Highly potent germination inhibitors in aqueous eluate of fruits of Bishop’s weed (Ammi majus L.) and avoidance of autoibhibition. Journal of Chemical Ecology 8:55–65.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Gopal, B. and U. Goel. 1993. Competition and allelopathy in aquatic plant communities. Botanical Review 59:155–210.CrossRefGoogle Scholar
  96. Grace, J.B. 1983. Autotoxic inhibition of seed germination by Typha latifolia: an evaluation. Oecologia 59:366–369.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Grant, E.A. and W.G. Sallans. 1964. Influence of plant extracts on germination and growth of eight forage species. J. Br. Grassland Soc. 19:191–197.CrossRefGoogle Scholar
  98. Groner, M.G. 1974. Intraspecific allelopathy in Kalanchoe daigremontiana. Botanical Gazette 135:73–79.CrossRefGoogle Scholar
  99. Harborne, J.B. 1972. Phytochemical ecology. Academic press. London, New York.Google Scholar
  100. Hegazy, A.K. et al. 1990. Allelopathy and autotoxic effects of Anastatica hierochuntica L.. Journal of Chemical Ecology 16:2183–2193.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Holah, J. and H.M. Alexander. 1999. Soil pathogenic fungi have the potential to affect the coexistence of two tallgrass prairie species. J. Ecol. 87:598–608.CrossRefGoogle Scholar
  102. Holah, J. et al. 1997. Impacts of a native root-rotting pathogen on successional development of old-growth Douglas fir forests. Oecologia 111:429–433.CrossRefPubMedPubMedCentralGoogle Scholar
  103. Hood, L.A. et al. 2004. The influence of spatial patterns of damping-off disease and arbuscular mycorrhial colonization on tree seedling establishment in Ghanaian forest soil. J. Ecol. 92:816–823.CrossRefGoogle Scholar
  104. Jong, T.J. and G.L. Klinkhamer. 1985. The negative effects of plant litter of parent plants of Cirsium vulgare on their offsprings: autotoxicity or immobilization? Oecologia 65:153–160.CrossRefPubMedPubMedCentralGoogle Scholar
  105. Kardol, P. et al. 2007. Microbe-mediated plant-soil feedback causes historical contingency effects in plant community assembly. Ecological Monographs 77:147–162.CrossRefGoogle Scholar
  106. Keever, C. 1950. Causes of succession on old fields of the Piedmont, North Carolina. Ecological Monographs 20:231–250.CrossRefGoogle Scholar
  107. Kiers, E., et al. 2000. Differential effects of tropical arbuscular mycorrhizal fungal inocula on root colonization and tree seedling growth: implications for tropical forest diversity. Ecology Letters 3:106–113.CrossRefGoogle Scholar
  108. Klironomos, J.N. 2002. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70.CrossRefPubMedPubMedCentralGoogle Scholar
  109. Kraus, et al. 2002. Allelopathic and autotoxic interactions in populations of Lolium perenne in monoculture and mixed culture. Functional Plant Biology 29:1465–1473.CrossRefGoogle Scholar
  110. Lamoureaux, S.L. et al. 2003. Populatin dynamics in mature stands of Hieracium pilosella in New Zealand. Plant Ecol. 166:263–273.CrossRefGoogle Scholar
  111. Li, J. and F.J. Romane. 1997. Effects of germination inhibition on the dynamics of Quercus ilex stand. J. Veg. Sci. 8:287–294.CrossRefGoogle Scholar
  112. Lodhi, M.A.K. 1979a. Allelopathic potential of Salsola kali L. and its possible role in rapid disappearance of weedy stage during revegetation. Journal of Chemical Ecology 5:429–437.CrossRefGoogle Scholar
  113. Lodhi, M.A.K. 1979b. Germination and decreased growth of Kochia scoparia in relation to its autoallelopathy. Can. J. Bot. 57:1083–1088.CrossRefGoogle Scholar
  114. Mallik, A.U. and P.F. Newton. 1988. Inhibition of black spruce seedling growth by forest-floor substrates of central Newfoundland. Forest Ecol. Manage. 23:273–283.CrossRefGoogle Scholar
  115. Matson, P.A., and R.D. Boone. 1984. Natural disturbance and nitrogen mineralization: wave-form dieback of mountain hemlock in the Oregon cascades. Ecology 65:1511–1516.CrossRefGoogle Scholar
  116. McNaughton, S.J. 1968. Autotoxic feedback in relation to germination and seedling growth in Typha latifolia. Ecology 49:367–369.CrossRefGoogle Scholar
  117. Miller, D.A. 1996. Allelopathy in forage crop system. Agron. J. 36:854–859.CrossRefGoogle Scholar
  118. Molofsky, J., et al. 2000. Plant litter feedback and population dynamics in an annual plant, Cardamine pensylvanica. Oecologia 124:522–528.Google Scholar
  119. Newman, E.I. and D.A. Rovira. 1975. Allelopathy among some British grassland species. J. Ecol. 63:727–737.CrossRefGoogle Scholar
  120. Olff, H., et al. 2000. Small-scale shifting mosaics of two dominant grassland species: the possible role of soil-borne pathogens. Oecologia 125:45–54.CrossRefPubMedPubMedCentralGoogle Scholar
  121. Oremus, P.A.I. and H. Otten. 1981. Factor affecting growth and nodulation of Hippophae¨ rhamnoides L. ssp. rhamnoides in soils from two successional stages of dune formation. Plant and Soil 63:317–331.CrossRefGoogle Scholar
  122. Packer, A. and K. Clay. 2000. Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404:278–280.CrossRefPubMedPubMedCentralGoogle Scholar
  123. Parenti, R.L. and E.L. Rice. 1969. Inhibitional effects of Digitaria sanguinalis and possible role in old-field succession. Bulletin of Torrey Botanical Club 96:70–78.CrossRefGoogle Scholar
  124. Pastor, J. 2006. Delays in nutrient cycling and plant population oscillations. Oikos 112:698–705.CrossRefGoogle Scholar
  125. Pellissier, F. and X.C. Souto. 1999. Allelopathy in northern temperate and boreal semi-naural woodland. Crit. Rev. Plant Science 18:637–652.CrossRefGoogle Scholar
  126. Perry, L.G. et al. 2005. Dual role for an allelochemical: (±)-catechin from Centaurea maculosa root exudates regulates conspecific seedling establishment. J. Ecol. 93:1126–1135.CrossRefGoogle Scholar
  127. Picman, J. and A.K. Picman. 1984. Autotoxicity in Parthenium hysterophorus and its possible role in control of germination. Biochemical System Ecology 12:287–292.CrossRefGoogle Scholar
  128. Rice, E.L. 1984. Allelophaty. 2nd ed. Academic Press.Google Scholar
  129. Solomon, B.P. 1983. Autoallelopathy in Solanum carolinense: reversible delayed germination. American Midland Naturalist 110:412–418.CrossRefGoogle Scholar
  130. Tilman, D. and D. Wedin. 1991. Oscillations and chaos in the dynamics of a perennial grass. Nature 353:653–655.CrossRefGoogle Scholar
  131. van de Koppel, J. and C.M. Crain. 2006. Scale-dependent inhibition drives regular tussock spacing in a freshwater marsh. American Naturalist 168:136–147.CrossRefGoogle Scholar
  132. Van der Putten, W.H., et al. 1993. Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature 362:53–56.CrossRefGoogle Scholar
  133. Van der Putten, W.H., et al. 2001. Linking above- and belowground multitrophic interctions of plants, herbivores, pathogens, and their antagonists. Trend in Ecology & Evolution 16:547–554.CrossRefGoogle Scholar
  134. Vokou, D. and N. S. Margaris. 1986. Autoallelopathy of Thymus capitatus. Acta Oecologica Oecologia Plantarum 7(2):157–164.Google Scholar
  135. Warrag, M.O.A. 1995. Autotoxic potential of foliage on seed germination and early growth of mesquite (Prosopis juliflora). Journal of Arid Environments 31:415–421.CrossRefGoogle Scholar
  136. Webb, L.J. et al. 1967. A factor toxic to seedling of the same species associated with living roots of the non-gregarious subtropical rain forest tree Grevillea robusta. J. Appl. Ecol. 4:13–25.CrossRefGoogle Scholar
  137. Wedin, D. and D. Tilman. 1993. Competition among grasses along a nitrogen gradient: initial conditions and mechanisms of competition. Ecol. Monogr. 63:199–229.CrossRefGoogle Scholar
  138. Young, C.C. 1984. Autointoxication in root exudates of Asparagus officinalis L.. Plant and Soil 82:247–253.CrossRefGoogle Scholar
  139. Zhang, Q. 1993. Potential role of allelopathy in the soil and the decomposing root of Chinese fir replanted wood-land. Plant and Soil 151:205–210.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • S. Mazzoleni
    • 1
    Email author
  • G. Bonanomi
    • 1
  • F. Giannino
    • 2
  • M. Rietkerk
    • 3
  • S. C. Dekker
    • 3
  • F. Zucconi
    • 4
  1. 1.Dipartimento di Arboricoltura, Botanica e Patologia VegetaleUniversity of Naples Federico IINaplesItaly
  2. 2.Dipartimento di Ingegneria Agraria e Agronomia del TerritorioUniversity of Naples Federico IINaplesItaly
  3. 3.Department of Environmental SciencesUtrecht UniversityTC UtrechtThe Netherlands
  4. 4.Dipartimento di Scienze Ambientali e delle Produzioni VegetaliUniversity Polytechnic of MarcheAnconaItaly

Personalised recommendations