Sensitivity of ground layer vegetation diversity descriptors in indicating forest naturalness
Abstract
Different diversity measures of forest floor assemblages were evaluated in order to check if they can be used as indicators of forest naturalness. We compared vascular and bryophyte vegetation of two habitat types in an unmanaged beech-dominated reserve and five managed stands of different ages. We used systematically collected data characterizing four spatial scales obtained by successively aggregating neighbouring quadrats. Species richness did not always differentiate near natural sites from managed sites, and the observed difference depended very much on the spatial scale used. The behaviour of Shannon-Wiener diversity function can only be understood if both the species richness and the evenness components are considered. Near natural plots had high Shannon-Wiener diversity values even at the finest spatial scale not only because of high number of species, but also because of high evenness. We found that a simple measure of pattern diversity – spatial variation of species importance – was the most effective in differentiating the diversity of plots with different levels of naturalness. The absolute values of pattern diversity in the forest floor vegetation were the highest in those plots where the characteristics of important limiting ecological factors were generated by natural disturbance. Vascular and bryophyte species responded differently to tree stand structural characteristics. The diversity of vascular vegetation was determined mainly by the spatial variation of light availability, whereas that of bryophyte vegetation responded to the amount and spatial heterogeneity of appropriate substrates (dead wood, rock). The use of pattern sensitive diversity measures is necessary to reveal diversity-naturalness relationships. We suggest that all diversity descriptors should be calculated for different spatial scales, since their change with spatial scale was as informative as their actual values.
Keywords
α-diversity Bryophytes Herbaceous plants Fagus sylvatica Forest management Pattern diversity Spatial scale Species richness Tree stand structureAbbreviations
- CWD
Coarse Woody Debris
- DBH
Diameter at Breast Height
Nomenclature follows
Simon (2000) for vascular plants Erzberger and Papp (2004) for bryophytesPreview
Unable to display preview. Download preview PDF.
References
- Andersson, L.I. and H. Hytteborn. 1991. Bryophytes and decaying wood - a comparison between managed and natural forest. Holarctic Ecol. 14:121–130.Google Scholar
- Bachmann, P., K. Kuusela and J. Uuttera (eds.). 1996. Assessment of Biodiversity for Improved Forest Management. European Forest Institute, Joensuu.Google Scholar
- Bachmann, P., M. Köhl and R. Päivinen (eds.). 1998. Assessment of Biodiversity for Improved Forest Planning. Kluwer Academic Publishers, Dordrecht.Google Scholar
- Bobiec, A. 1998. The mosaic diversity of field layer vegetation in the natural and exploited forests of Bialowiezia. Plant Ecol. 136: 175–187.CrossRefGoogle Scholar
- Boyle, T.J.B. and B. Boontawee (eds.). 1995. Measuring and Monitoring Biodiversity in Tropical and Temperate Forests. Center for International Forestry Research (CIFOR), Bogor.Google Scholar
- Campatella, G., R. Canullo and S. Bartha. 2004. Coenostate descriptors and spatial dependence in vegetation - derived variables in monitoring forest dynamics and assembly rules. Community Ecol. 5:105–114.CrossRefGoogle Scholar
- Christensen, M., K. Hahn, E.P. Mountford, P. Ódor, T. Standovár, D. Rozenbergar, J. Diaci, S. Wijdeven, P. Meyer, S. Winter and T. Vrska. 2005. Dead wood in European beech (Fagus sylvatica) forest reserves. Forest Ecol. Manage. 210: 267–282.CrossRefGoogle Scholar
- Collins, B.S., K.P. Dunne and S.T.A. Pickett. 1985. Responses of forest herbs to canopy gaps. In: Pickett, S.T.A. (ed.), The Ecology of Natural Disturbance and Patch Dynamics. Academic Press Inc., London. pp. 218–234.Google Scholar
- Collins, B.S. and S.T.A. Pickett. 1987. Influence of canopy opening on the environment and herb layer in a northern hardwoods forest. Vegetatio 70: 3–10.Google Scholar
- Diekmann, M. 1994. Decidous forest vegetation in boreo-nemoral Scandinavia. Acta Phytogeographica Suecica 80: 1–107.Google Scholar
- During, H.J. 1979. Life strategies of bryophytes: a preliminary review. Lindbergia 5: 2–18.Google Scholar
- During, H.J. 1992. Ecological classifications of bryophytes and lichens. In: Bates, J. W. (ed.), Bryophytes and Lichens in a Changing Environment. Clarendon Press, Oxford. pp. 1–31.Google Scholar
- Erzberger, P. and B. Papp. 2004. Annotated checklist of Hungarian bryophytes. Studia Bot. Hung. 35: 91–149.Google Scholar
- Fekete, G. 1974. Tölgyesek relatív megvilágítása és a gyepszint fajainak eloszlása. Studia Bot. Hung. 9: 87–96.Google Scholar
- Ferris, R. and J.W. Humphrey. 1999. A review of potential biodivesity indicators for application in British forests. Forestry 72: 313–328.CrossRefGoogle Scholar
- Gálhidy, L. 1999. Természetközeli és gazdasági erdõk szerkezetének összehasonlító vizsgálata. Master Thesis, Loránd Eötvös University, Budapest, Hungary.Google Scholar
- Gálhidy, L., B. Mihók, A. Hagyo, K. Rajkai and T. Standovár. 2006. Effects of gap size and associated changes in light and soil moisture on the understorey vegetation of a Hungarian beech forest. Plant Ecol. 183: 133–145.CrossRefGoogle Scholar
- Graae, B.J. and V.S. Heskjaer. 1997. A comparison of understorey vegetation between untouched and managed deciduous forest in denmark. Forest Ecol. Manage. 96: 111–123.CrossRefGoogle Scholar
- Grime, J.P., J.G. Hodgson and R. Hunt. 1988. Comparative Plant Ecology. A Functional Approach to Common British Species. Unwin Hyman Ltd, London.Google Scholar
- Gustafsson, L. and T. Hallingbäck. 1988. Bryophyte flora and vegetation of managed and virgin conifrous forest in South-West Sweden. Biol. Conserv. 44: 283–300.CrossRefGoogle Scholar
- Hermy, M., O. Honnay, L. Firbank, C. Grashof-Bokdam and J.E. Lawesson. 1999. An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol. Conserv. 9: 9–22.CrossRefGoogle Scholar
- Hunter, M. L. 1999. Maintaining Biodiversity in Forest Ecosystems. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
- Jackson, S.W., C.A. Harper, D.S. Buckley and B.F. Miller. 2006. Short-term effects of silvicultural treatments on microsite heterogeneity and plant diversity in mature Tennessee oak-hickory forests. Northern J. Appl. Forestry 23: 197–203.CrossRefGoogle Scholar
- Kaennel, M. 1998. Biodiversity: a diversity in definitions. Assessment of biodiversity for improved forest planning. In: Bachmann, P., M. Köhl and R. Päivinen (eds.), Assessment of Biodiversity for Improved Forest Planning. Kluwer Academic Publishers, Dordrecht. pp. 71–81.CrossRefGoogle Scholar
- Kenderes, K. and T. Standovar. 2003. The impact of forest management on forest floor vegetation evaluated by species traits. Community Ecol. 4: 51–62.CrossRefGoogle Scholar
- Kolb, A. and M. Diekmann. 2005. Effects of life-history traits on responses of plant species to forest fragmentation. Conserv. Biol. 19: 929–938.CrossRefGoogle Scholar
- Koop, H. 1989. Forest Dynamics. SILVI-STAR: A Comprehensive Monitoring System. Springer-Verlag, Berlin.CrossRefGoogle Scholar
- Korpel, S. 1995. Die Urwälder der Westkarpaten. Gustav Fischer Verlag, Stuttgart, Jena, New York.Google Scholar
- Kovács, M. 1968. Die Acerion pseudoplatani Wälder (Mercuriali-Tilietum und Phyllitidi-Aceretum) des Mátra-Gebirges. Acta Botanica Academiae Scientiarum Hungaricae 14: 331–350.Google Scholar
- Kruys, N. and B. G. Jonsson. 1999. Fine woody debris is important for species richness on logs in managed boreal spruce forests in northern Sweden. Can. J. Forest Res. 29: 1295–1299.CrossRefGoogle Scholar
- Larsson, T.B., P. Angelstam, G. Balent, A. Barbati, R.J. Bijlsma, A. Boncina, R. Bradshaw, W. Bücking, O. Ciancio, P. Corona, J. Diaci, S. Dias, H. Ellenberg, F.M. Fernandes, F. Fernández-Gonzalez, R. Ferris, G. Frank, P. Friis-Müller, P. S. Giller, L. Gustafsson, K. Halbritter, S. Hall, L. Hansson, J. Innes, H. Jactel, M. Keannel-Dobbertin, M. Klein, M. Marchetti, G.M.J. Mohren, J. Niemelä, J. O’Halloran, E. Rametsteiner, F. Rego, C. Scheideger, R. Scotti, K. Sjöberg, I. Spanos, K. Spanos, T. Standovár, L. Svensson, B.A. Tommerås, D. Trakolis, J. Uuttera, D. van den Meersschaut, K. Vandekerkhove, P.M. Walsh and A. Watt. 2001. Biodiversity evaluation tools for European forests. Ecological Bulletins 50: 1–237.Google Scholar
- Lesica, P., B. McCune, S.V. Cooper and W.S. Hong. 1991. Differences in lichen and bryophyte communities between old-growth and managed second-growth forests in the Swan Valley, Montana. C.J. Bot. 69: 1745–1755.CrossRefGoogle Scholar
- Magurran, A.E. 2004. Measuring Biological Diversity. Blackwell, Oxford.Google Scholar
- Matthews, J. D. 1991. Silvicultural Systems. Calderon Press, Oxford.Google Scholar
- Mihók, B., L. Gálhidy, K. Kelemen and T. Standovár. 2005. Study of gap-phase regeneration in a managed beech forest: relations between tree regeneration and light, substrate features and cover of ground vegetation. Acta Silvatica et Lignaria Hungarica 1: 25–38.Google Scholar
- Nagaike, T., T. Kamitani and T. Nakashizuka. 2005. Effects of different forest management systems on plant species diversity in a Fagus crenata forested landscape of central Japan. Can. J. Forest Res. 35: 2832–2840.CrossRefGoogle Scholar
- Noss, R.F. 1990. Indicators for monitoring biodiversity: a hierarchical approach. Conserv. Biol. 4: 355–364.CrossRefGoogle Scholar
- Noss, R.F. 1999. Assessing and monitoring forest biodiversity: A suggested framework and indicators. Forest Ecol. Manage. 115: 135–146.CrossRefGoogle Scholar
- Ódor, P. 2000. A Kékes Észak Erdőrezervátum mohaflórája és mohavegetációjának jellemzése. Kitaibelia 5: 115–123.Google Scholar
- Ódor, P., J. Heilmann-Clausen, M. Christensen, E. Aude, K.W. van Dort, A. Piltaver, I. Siller, M.T. Veerkamp, R. Walleyn, T. Standovár, A.F.M. van Hees, J. Kosec, N. Matocec, H. Kraigher and T. Grebenc. 2006. Diversity of dead wood inhabiting fungi and bryophytes in semi-natural beech forests in Europe. Biol. Conserv. 131:58–71.CrossRefGoogle Scholar
- Ódor, P. and T. Standovár. 2001. Richness of bryophyte vegetation in a near-natural and managed beech stands: the effects of management-induced differences in dead wood. Ecological Bulletins 49: 219–229.Google Scholar
- Ódor, P. and T. Standovár. 2002. Substrate specificity and community structure of bryophyte vegetation in a near-natural montane beech forest. Community Ecol. 3: 39–49.CrossRefGoogle Scholar
- Ódor, P. and A.F.M. van Hees. 2004. Preferences of dead wood inhabiting bryophytes for decay stage, log size and habitat types in Hungarian beech forests. J. Bryol. 26: 79–95.CrossRefGoogle Scholar
- Peterken, G.F. 1996. Natural Woodland. Ecology and Conservation in Northern Temperate Regions. Cambridge University Press, Cambridge.Google Scholar
- Peterken, G.F. and M. Game. 1984. Historical factors affecting the number and distribution of vascular plant species in the woodlands of central Lincolnshire. J. Ecol. 72: 155–182.CrossRefGoogle Scholar
- Pielou, E.C. 1995. Biodiversity versus old-style diversity: measuring biodiversity for conservation. In: Boyle, T. J. B. and B. Boontawee (eds.), Measuring and Monitoring Biodiversity in Tropical and Temperate Forests. CIFOR, Bogor. pp. 5–17.Google Scholar
- Podani, J. 2000. Introduction to the Exploration of Multivariate Biological Data. Backhuys, Leiden.Google Scholar
- Podani, J., T. Czárán and S. Bartha. 1993. Pattern, area and diversity: the importance of spatial scale in species assemblages. Abstracta Botanica 17: 37–51.Google Scholar
- Rambo, T.R. and P.S. Muir. 1998. Bryophyte species association with coarse woody debris and stand ages in Oregon. The Bryologist 101: 366–376.CrossRefGoogle Scholar
- Sadler, K.D. and G.E. Bradfield. 2000. Microscale distribution patterns of terrestrial bryophytes in a subalpine forest: the use of logistic regression as an interpretive tool. Community Ecol. 1: 57–64.CrossRefGoogle Scholar
- Schaetzl, R.J., S.F. Burns, D.L. Johnson and T.W. Small. 1989. Tree uprooting: review on impacts on forest ecology. Vegetatio 79: 165–176.CrossRefGoogle Scholar
- Simberloff, D. 1998. Flagships, umbrellas, and keystones: is single species management passé in the landscape era? Biol. Conserv. 83: 247–257.CrossRefGoogle Scholar
- Simon, T. 2000. A magyarországi edényes flóra határozója. Harasztok-virágos növények. Tankönyvkiadó, Budapest.Google Scholar
- Smith, A. J. E. 1982. Bryophyte Ecology. Chapman and Hall, London.CrossRefGoogle Scholar
- Söderström, L. 1988. The occurrence of epxylic bryophyte and lichen species in an old natural and a managed forest stand in Northeast Sweden. Biol. Conserv. 45: 169–178.CrossRefGoogle Scholar
- Standovár, T. 1998. Diversity of ground-layer vegetation in beech forest. Comparison of semi-natural and managed beech stands in northern Hungary. In: Bachmann, P., M. Köhl and R. Päivinen (eds.), Assessment of Biodiversity for Improved Forest Planning. Kluwer Academic Publishers, Dordrecht. pp. 381–388.CrossRefGoogle Scholar
- Standovár, T. and K. Kenderes. 2003. A review on natural stand dynamics in beechwoods of East Central Europe. Applied Ecology and Environmental Research 1: 19–46.CrossRefGoogle Scholar
- Uemura, S. 1993. Patterns of leaf phenology in forest understory. Can. J. Bot. 72: 409–414.CrossRefGoogle Scholar
- Verheyen, K., O. Honnay, G. Motzkin, M. Hermy and D.R. Foster. 2003. Response of forest plant species to land-use change: a life-history trait-based approach. J. Ecol. 91: 563–577.CrossRefGoogle Scholar
- Voller, J. and S. Harrison (eds.) 1998. Conservation Biology Principles for Forested Landscapes. UBS Press, Vancouver.Google Scholar
- Zar, J. H. 1999. Biostatistical Analysis. Prentice Hall, New Jersey.Google Scholar
- Zenner, E.K., J.M. Kabrick, R.G.Jensen, J.E. Peck and J.K. Grabner. 2006. Responses of ground flora to a gradient of harvest intensity in the Missouri Ozarks. Forest Ecology and Management 222: 326–334.CrossRefGoogle Scholar
Copyright information
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.