Advertisement

Community Ecology

, Volume 7, Issue 2, pp 199–209 | Cite as

Sensitivity of ground layer vegetation diversity descriptors in indicating forest naturalness

  • T. StandovárEmail author
  • P. Ódor
  • R. Aszalós
  • L. Gálhidy
Article

Abstract

Different diversity measures of forest floor assemblages were evaluated in order to check if they can be used as indicators of forest naturalness. We compared vascular and bryophyte vegetation of two habitat types in an unmanaged beech-dominated reserve and five managed stands of different ages. We used systematically collected data characterizing four spatial scales obtained by successively aggregating neighbouring quadrats. Species richness did not always differentiate near natural sites from managed sites, and the observed difference depended very much on the spatial scale used. The behaviour of Shannon-Wiener diversity function can only be understood if both the species richness and the evenness components are considered. Near natural plots had high Shannon-Wiener diversity values even at the finest spatial scale not only because of high number of species, but also because of high evenness. We found that a simple measure of pattern diversity – spatial variation of species importance – was the most effective in differentiating the diversity of plots with different levels of naturalness. The absolute values of pattern diversity in the forest floor vegetation were the highest in those plots where the characteristics of important limiting ecological factors were generated by natural disturbance. Vascular and bryophyte species responded differently to tree stand structural characteristics. The diversity of vascular vegetation was determined mainly by the spatial variation of light availability, whereas that of bryophyte vegetation responded to the amount and spatial heterogeneity of appropriate substrates (dead wood, rock). The use of pattern sensitive diversity measures is necessary to reveal diversity-naturalness relationships. We suggest that all diversity descriptors should be calculated for different spatial scales, since their change with spatial scale was as informative as their actual values.

Keywords

α-diversity Bryophytes Herbaceous plants Fagus sylvatica Forest management Pattern diversity Spatial scale Species richness Tree stand structure 

Abbreviations

CWD

Coarse Woody Debris

DBH

Diameter at Breast Height

Nomenclature follows

Simon (2000) for vascular plants Erzberger and Papp (2004) for bryophytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, L.I. and H. Hytteborn. 1991. Bryophytes and decaying wood - a comparison between managed and natural forest. Holarctic Ecol. 14:121–130.Google Scholar
  2. Bachmann, P., K. Kuusela and J. Uuttera (eds.). 1996. Assessment of Biodiversity for Improved Forest Management. European Forest Institute, Joensuu.Google Scholar
  3. Bachmann, P., M. Köhl and R. Päivinen (eds.). 1998. Assessment of Biodiversity for Improved Forest Planning. Kluwer Academic Publishers, Dordrecht.Google Scholar
  4. Bobiec, A. 1998. The mosaic diversity of field layer vegetation in the natural and exploited forests of Bialowiezia. Plant Ecol. 136: 175–187.CrossRefGoogle Scholar
  5. Boyle, T.J.B. and B. Boontawee (eds.). 1995. Measuring and Monitoring Biodiversity in Tropical and Temperate Forests. Center for International Forestry Research (CIFOR), Bogor.Google Scholar
  6. Campatella, G., R. Canullo and S. Bartha. 2004. Coenostate descriptors and spatial dependence in vegetation - derived variables in monitoring forest dynamics and assembly rules. Community Ecol. 5:105–114.CrossRefGoogle Scholar
  7. Christensen, M., K. Hahn, E.P. Mountford, P. Ódor, T. Standovár, D. Rozenbergar, J. Diaci, S. Wijdeven, P. Meyer, S. Winter and T. Vrska. 2005. Dead wood in European beech (Fagus sylvatica) forest reserves. Forest Ecol. Manage. 210: 267–282.CrossRefGoogle Scholar
  8. Collins, B.S., K.P. Dunne and S.T.A. Pickett. 1985. Responses of forest herbs to canopy gaps. In: Pickett, S.T.A. (ed.), The Ecology of Natural Disturbance and Patch Dynamics. Academic Press Inc., London. pp. 218–234.Google Scholar
  9. Collins, B.S. and S.T.A. Pickett. 1987. Influence of canopy opening on the environment and herb layer in a northern hardwoods forest. Vegetatio 70: 3–10.Google Scholar
  10. Diekmann, M. 1994. Decidous forest vegetation in boreo-nemoral Scandinavia. Acta Phytogeographica Suecica 80: 1–107.Google Scholar
  11. During, H.J. 1979. Life strategies of bryophytes: a preliminary review. Lindbergia 5: 2–18.Google Scholar
  12. During, H.J. 1992. Ecological classifications of bryophytes and lichens. In: Bates, J. W. (ed.), Bryophytes and Lichens in a Changing Environment. Clarendon Press, Oxford. pp. 1–31.Google Scholar
  13. Erzberger, P. and B. Papp. 2004. Annotated checklist of Hungarian bryophytes. Studia Bot. Hung. 35: 91–149.Google Scholar
  14. Fekete, G. 1974. Tölgyesek relatív megvilágítása és a gyepszint fajainak eloszlása. Studia Bot. Hung. 9: 87–96.Google Scholar
  15. Ferris, R. and J.W. Humphrey. 1999. A review of potential biodivesity indicators for application in British forests. Forestry 72: 313–328.CrossRefGoogle Scholar
  16. Gálhidy, L. 1999. Természetközeli és gazdasági erdõk szerkezetének összehasonlító vizsgálata. Master Thesis, Loránd Eötvös University, Budapest, Hungary.Google Scholar
  17. Gálhidy, L., B. Mihók, A. Hagyo, K. Rajkai and T. Standovár. 2006. Effects of gap size and associated changes in light and soil moisture on the understorey vegetation of a Hungarian beech forest. Plant Ecol. 183: 133–145.CrossRefGoogle Scholar
  18. Graae, B.J. and V.S. Heskjaer. 1997. A comparison of understorey vegetation between untouched and managed deciduous forest in denmark. Forest Ecol. Manage. 96: 111–123.CrossRefGoogle Scholar
  19. Grime, J.P., J.G. Hodgson and R. Hunt. 1988. Comparative Plant Ecology. A Functional Approach to Common British Species. Unwin Hyman Ltd, London.Google Scholar
  20. Gustafsson, L. and T. Hallingbäck. 1988. Bryophyte flora and vegetation of managed and virgin conifrous forest in South-West Sweden. Biol. Conserv. 44: 283–300.CrossRefGoogle Scholar
  21. Hermy, M., O. Honnay, L. Firbank, C. Grashof-Bokdam and J.E. Lawesson. 1999. An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol. Conserv. 9: 9–22.CrossRefGoogle Scholar
  22. Hunter, M. L. 1999. Maintaining Biodiversity in Forest Ecosystems. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  23. Jackson, S.W., C.A. Harper, D.S. Buckley and B.F. Miller. 2006. Short-term effects of silvicultural treatments on microsite heterogeneity and plant diversity in mature Tennessee oak-hickory forests. Northern J. Appl. Forestry 23: 197–203.CrossRefGoogle Scholar
  24. Kaennel, M. 1998. Biodiversity: a diversity in definitions. Assessment of biodiversity for improved forest planning. In: Bachmann, P., M. Köhl and R. Päivinen (eds.), Assessment of Biodiversity for Improved Forest Planning. Kluwer Academic Publishers, Dordrecht. pp. 71–81.CrossRefGoogle Scholar
  25. Kenderes, K. and T. Standovar. 2003. The impact of forest management on forest floor vegetation evaluated by species traits. Community Ecol. 4: 51–62.CrossRefGoogle Scholar
  26. Kolb, A. and M. Diekmann. 2005. Effects of life-history traits on responses of plant species to forest fragmentation. Conserv. Biol. 19: 929–938.CrossRefGoogle Scholar
  27. Koop, H. 1989. Forest Dynamics. SILVI-STAR: A Comprehensive Monitoring System. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  28. Korpel, S. 1995. Die Urwälder der Westkarpaten. Gustav Fischer Verlag, Stuttgart, Jena, New York.Google Scholar
  29. Kovács, M. 1968. Die Acerion pseudoplatani Wälder (Mercuriali-Tilietum und Phyllitidi-Aceretum) des Mátra-Gebirges. Acta Botanica Academiae Scientiarum Hungaricae 14: 331–350.Google Scholar
  30. Kruys, N. and B. G. Jonsson. 1999. Fine woody debris is important for species richness on logs in managed boreal spruce forests in northern Sweden. Can. J. Forest Res. 29: 1295–1299.CrossRefGoogle Scholar
  31. Larsson, T.B., P. Angelstam, G. Balent, A. Barbati, R.J. Bijlsma, A. Boncina, R. Bradshaw, W. Bücking, O. Ciancio, P. Corona, J. Diaci, S. Dias, H. Ellenberg, F.M. Fernandes, F. Fernández-Gonzalez, R. Ferris, G. Frank, P. Friis-Müller, P. S. Giller, L. Gustafsson, K. Halbritter, S. Hall, L. Hansson, J. Innes, H. Jactel, M. Keannel-Dobbertin, M. Klein, M. Marchetti, G.M.J. Mohren, J. Niemelä, J. O’Halloran, E. Rametsteiner, F. Rego, C. Scheideger, R. Scotti, K. Sjöberg, I. Spanos, K. Spanos, T. Standovár, L. Svensson, B.A. Tommerås, D. Trakolis, J. Uuttera, D. van den Meersschaut, K. Vandekerkhove, P.M. Walsh and A. Watt. 2001. Biodiversity evaluation tools for European forests. Ecological Bulletins 50: 1–237.Google Scholar
  32. Lesica, P., B. McCune, S.V. Cooper and W.S. Hong. 1991. Differences in lichen and bryophyte communities between old-growth and managed second-growth forests in the Swan Valley, Montana. C.J. Bot. 69: 1745–1755.CrossRefGoogle Scholar
  33. Magurran, A.E. 2004. Measuring Biological Diversity. Blackwell, Oxford.Google Scholar
  34. Matthews, J. D. 1991. Silvicultural Systems. Calderon Press, Oxford.Google Scholar
  35. Mihók, B., L. Gálhidy, K. Kelemen and T. Standovár. 2005. Study of gap-phase regeneration in a managed beech forest: relations between tree regeneration and light, substrate features and cover of ground vegetation. Acta Silvatica et Lignaria Hungarica 1: 25–38.Google Scholar
  36. Nagaike, T., T. Kamitani and T. Nakashizuka. 2005. Effects of different forest management systems on plant species diversity in a Fagus crenata forested landscape of central Japan. Can. J. Forest Res. 35: 2832–2840.CrossRefGoogle Scholar
  37. Noss, R.F. 1990. Indicators for monitoring biodiversity: a hierarchical approach. Conserv. Biol. 4: 355–364.CrossRefGoogle Scholar
  38. Noss, R.F. 1999. Assessing and monitoring forest biodiversity: A suggested framework and indicators. Forest Ecol. Manage. 115: 135–146.CrossRefGoogle Scholar
  39. Ódor, P. 2000. A Kékes Észak Erdőrezervátum mohaflórája és mohavegetációjának jellemzése. Kitaibelia 5: 115–123.Google Scholar
  40. Ódor, P., J. Heilmann-Clausen, M. Christensen, E. Aude, K.W. van Dort, A. Piltaver, I. Siller, M.T. Veerkamp, R. Walleyn, T. Standovár, A.F.M. van Hees, J. Kosec, N. Matocec, H. Kraigher and T. Grebenc. 2006. Diversity of dead wood inhabiting fungi and bryophytes in semi-natural beech forests in Europe. Biol. Conserv. 131:58–71.CrossRefGoogle Scholar
  41. Ódor, P. and T. Standovár. 2001. Richness of bryophyte vegetation in a near-natural and managed beech stands: the effects of management-induced differences in dead wood. Ecological Bulletins 49: 219–229.Google Scholar
  42. Ódor, P. and T. Standovár. 2002. Substrate specificity and community structure of bryophyte vegetation in a near-natural montane beech forest. Community Ecol. 3: 39–49.CrossRefGoogle Scholar
  43. Ódor, P. and A.F.M. van Hees. 2004. Preferences of dead wood inhabiting bryophytes for decay stage, log size and habitat types in Hungarian beech forests. J. Bryol. 26: 79–95.CrossRefGoogle Scholar
  44. Peterken, G.F. 1996. Natural Woodland. Ecology and Conservation in Northern Temperate Regions. Cambridge University Press, Cambridge.Google Scholar
  45. Peterken, G.F. and M. Game. 1984. Historical factors affecting the number and distribution of vascular plant species in the woodlands of central Lincolnshire. J. Ecol. 72: 155–182.CrossRefGoogle Scholar
  46. Pielou, E.C. 1995. Biodiversity versus old-style diversity: measuring biodiversity for conservation. In: Boyle, T. J. B. and B. Boontawee (eds.), Measuring and Monitoring Biodiversity in Tropical and Temperate Forests. CIFOR, Bogor. pp. 5–17.Google Scholar
  47. Podani, J. 2000. Introduction to the Exploration of Multivariate Biological Data. Backhuys, Leiden.Google Scholar
  48. Podani, J., T. Czárán and S. Bartha. 1993. Pattern, area and diversity: the importance of spatial scale in species assemblages. Abstracta Botanica 17: 37–51.Google Scholar
  49. Rambo, T.R. and P.S. Muir. 1998. Bryophyte species association with coarse woody debris and stand ages in Oregon. The Bryologist 101: 366–376.CrossRefGoogle Scholar
  50. Sadler, K.D. and G.E. Bradfield. 2000. Microscale distribution patterns of terrestrial bryophytes in a subalpine forest: the use of logistic regression as an interpretive tool. Community Ecol. 1: 57–64.CrossRefGoogle Scholar
  51. Schaetzl, R.J., S.F. Burns, D.L. Johnson and T.W. Small. 1989. Tree uprooting: review on impacts on forest ecology. Vegetatio 79: 165–176.CrossRefGoogle Scholar
  52. Simberloff, D. 1998. Flagships, umbrellas, and keystones: is single species management passé in the landscape era? Biol. Conserv. 83: 247–257.CrossRefGoogle Scholar
  53. Simon, T. 2000. A magyarországi edényes flóra határozója. Harasztok-virágos növények. Tankönyvkiadó, Budapest.Google Scholar
  54. Smith, A. J. E. 1982. Bryophyte Ecology. Chapman and Hall, London.CrossRefGoogle Scholar
  55. Söderström, L. 1988. The occurrence of epxylic bryophyte and lichen species in an old natural and a managed forest stand in Northeast Sweden. Biol. Conserv. 45: 169–178.CrossRefGoogle Scholar
  56. Standovár, T. 1998. Diversity of ground-layer vegetation in beech forest. Comparison of semi-natural and managed beech stands in northern Hungary. In: Bachmann, P., M. Köhl and R. Päivinen (eds.), Assessment of Biodiversity for Improved Forest Planning. Kluwer Academic Publishers, Dordrecht. pp. 381–388.CrossRefGoogle Scholar
  57. Standovár, T. and K. Kenderes. 2003. A review on natural stand dynamics in beechwoods of East Central Europe. Applied Ecology and Environmental Research 1: 19–46.CrossRefGoogle Scholar
  58. Uemura, S. 1993. Patterns of leaf phenology in forest understory. Can. J. Bot. 72: 409–414.CrossRefGoogle Scholar
  59. Verheyen, K., O. Honnay, G. Motzkin, M. Hermy and D.R. Foster. 2003. Response of forest plant species to land-use change: a life-history trait-based approach. J. Ecol. 91: 563–577.CrossRefGoogle Scholar
  60. Voller, J. and S. Harrison (eds.) 1998. Conservation Biology Principles for Forested Landscapes. UBS Press, Vancouver.Google Scholar
  61. Zar, J. H. 1999. Biostatistical Analysis. Prentice Hall, New Jersey.Google Scholar
  62. Zenner, E.K., J.M. Kabrick, R.G.Jensen, J.E. Peck and J.K. Grabner. 2006. Responses of ground flora to a gradient of harvest intensity in the Missouri Ozarks. Forest Ecology and Management 222: 326–334.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2006

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • T. Standovár
    • 1
    Email author
  • P. Ódor
    • 1
  • R. Aszalós
    • 2
  • L. Gálhidy
    • 1
  1. 1.Department of Plant Taxonomy and EcologyEötvös UniversityBudapestHungary
  2. 2.Institute of Ecology and BotanyHungarian Academy of SciencesVácrátótHungary

Personalised recommendations