Community Ecology

, Volume 7, Issue 2, pp 181–188 | Cite as

Digital representation of spatial variation of multivariate landscape data

  • A. Altobelli
  • E. BressanEmail author
  • E. Feoli
  • P. Ganis
  • F. Martini


We propose a method that has general relevance to the digital representation of spatial variation of multivariate landscape data. It is based on the average similarity that operational geographic units (OGU) have with the adjacent ones according to characters relevant understanding landscape patterns and dynamics. The method is flexible and easily executable within the technological framework of geographic information systems (GIS) that today is available even free of charge or at very low cost. An example shows how the method, applied to spatial data of a floristic project for the urban area of Trieste (NE-Italy), can identify floristically homogeneous patches and can quantify the heterogeneity of the transition zones between such patches.


Classification Flora GIS Multivariate data Landscape Similarity Spatial patterns 



Geographic Information System


Operational Geographic Unit


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altobelli, A., E, Bressan, E. Feoli, P. Ganis, and F. Martini. (in press). Improving knowledge on urban vegetation with the application of GIS technology to existing floristic and cartographic data bases. J. Applied Veg. Sci.Google Scholar
  2. Aronoff, S. 1989. Geographic Information Systems: A Management Perspective. WDL Publications, Ottawa, Canada.Google Scholar
  3. Baker, W.L. and C. Yunming. 1992. The r.le programs for multiscale analysis of landscape structure using the GRASS geographical information system. Landscape Ecology 7:291–302.CrossRefGoogle Scholar
  4. Blough, D. S. 1975. Steady state data and a quantitative model of operant generalization and discrimination. J. Exp. Psychol.: Animal Behavior Processes 104:3–21.Google Scholar
  5. Blough, D. S. 1983. Alternative accounts of stimulus control. In: M.L. Commons, R.J. Herrnstein and A.L. Wagner (eds.), Quantitative Analysis of Behavior, Vol. 4: Acquisition II. Ballinger, New York, pp. 59–74.Google Scholar
  6. Box, E.O., B. N. Holben, and V. Kalb. 1989. Accuracy of the AVHRR Vegetation Index as a predictor of biomass, primary productivity and net CO2 flux. Vegetatio 80:71–89.CrossRefGoogle Scholar
  7. Burrough, P.A. 1986. Principles of Geographical Information Systems for Natural Resource Analysis. Oxford University Press, Oxford.Google Scholar
  8. Burrough, P.A. 1987. Spatial aspects of ecological data. In: Jongman, R.H.G., Ter Braak, C.J.F. and O.F.R. van Tongeren (eds.). Data Analysis in Community and Landscape Ecology, Pudoc, Wageningen, pp. 213–251.Google Scholar
  9. Carranza, L., E. Feoli and P. Ganis. 1998. Analysis of vegetation structural diversity by Burnaby’s similarity index. Plant Ecol. 138:77–87.CrossRefGoogle Scholar
  10. Cullinam, V.I. and J.M. Thomas. 1992. A comparison of quantitative methods for examining landscape pattern and scale. Landscape Ecology 7:211–227.CrossRefGoogle Scholar
  11. Donovan, T. M., P. W. Jones, E. M. Annand and F. R. Thompson. 1997. Variation in local-scale edge effects: Mechanisms and landscape context. Ecology 78:2064–2075.CrossRefGoogle Scholar
  12. Ebdon, D. 1977. Statistics in Geography. A Practical Approach. Blackwell, Oxford.Google Scholar
  13. Ehrendorfer, F. and U. Hamann. 1965. Vorschläge zu einer floristichen Kartierung von Mitteleuropea. Ber. Dtsch Bot. Ges. 78:35–50.Google Scholar
  14. Fabbri, A.G. 1991. Spatial data analysis in raster-based GIS: an introdution to geometric characterization. In: Belward, A.S. and C.R. Valenzuela (eds). Remote Sensing and Geographical Information Systems for Resource Management in Developing Countries. ECSC, EEC, EAEC, Brussels and Luxembourg, pp. 357–388.CrossRefGoogle Scholar
  15. Feoli, E. 1984. Some aspects of classification and ordination of vegetation data in perspective. Studia Geobotanica 4:7–21.Google Scholar
  16. Feoli, E. and D. Lausi. 1980. Hierarchical levels in syntaxonomy based on information functions. Vegetatio 42:113–115.CrossRefGoogle Scholar
  17. Feoli, E. and V. Zuccarello. 1996. Spatial pattern of ecological processes: the role of similarity in GIS applications for landscape analysis. In: Fisher, M., Scholten, H. and D. Unwin (eds). Spatial Analytical Perspectives on GIS. Taylor and Francis, London, pp. 175–185.Google Scholar
  18. Feoli, E., P. Ganis, G. Oriolo and A. Patrono. 1992a. Modelli per il calcolo della diversità e loro applicabilità nella valutazione di impatto ambientale. S.IT.E. Atti 14:29–34.Google Scholar
  19. Feoli, E., G. Oriolo, A. Patrono and V. Zuccarello. 1992b. Phytosociology and G.I.S.: conceptual and technical tools to map landscape dynamics. Documents Phytosociologiques 14:65–81.Google Scholar
  20. Feoli, E. and L. Orlóci. 1979. Analysis of concentration and detection of underlying factors in structured tables. Vegetatio 40:49–54.CrossRefGoogle Scholar
  21. Gardner, R.H. and R.V. O’Neil. 1991. Pattern, process, and predictability: the use of neutral models for landscape analysis. In: Turner, M.G. and R.H. Gardner (eds). Quantitative Methods in Landscape Ecology. Springer-Verlag, New York, pp. 289–307.CrossRefGoogle Scholar
  22. Goodall, D.W. 1964. A probabilistic similarity index. Nature 203:1098CrossRefGoogle Scholar
  23. Goodall, D.W., Ganis, P. and E. Feoli. 1991. Probabilistic methods in classification: a manual for seven computer programs. In: Feoli, E. and L. Orlóci (eds). Computer Assisted Vegetation Analysis. Kluwer, Dordrecht, pp. 453–467.CrossRefGoogle Scholar
  24. Gustafson, E.J. and G.R. Parker. 1992. Relationships between land-cover proportion and indices of landscape spatial pattern. Landscape Ecology 7:101–110.CrossRefGoogle Scholar
  25. Isaaks, E.H. and R.M. Srivastava. 1989. Applied Geostatistics. Oxford University Press, New York.Google Scholar
  26. Lyon, J. G., D. Yuan, R. S. Lunetta and C.D. Elvidge. 1998. A change detection experiment using vegetation indices. Photogrammetric Engineering and Remote Sensing 64:143–150.Google Scholar
  27. Mal Maguire, D.J., M. F. Goodchild and D.W. Rhind (eds). 1991. Geographical Information Systems. Principles and Applications. Longman Scientific and Technical, New York.Google Scholar
  28. Malczewski, J. 1999. GIS and Multicriteria Decision Analysis. Wiley, New York.Google Scholar
  29. McGarigal, K and B. J. Marks. 1994. Fragstats: Spatial Pattern Analysis Program for Quantifying Landscape Structure. Technical report, U.S. Dept. of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR. Report PNW-GTR-351.Google Scholar
  30. Milne, B.T. 1991. Lessons from applying fractal models to landscape pattern. In: Turner, M.G. and R.H. Gardner (eds). Quantitative Methods in Landscape Ecology. Springer, New York, pp. 199–235.CrossRefGoogle Scholar
  31. Mucina, L., V. Cik and P. Slavkovky. 1991. Trend surface analysis and splines for pattern determination in plant communities. In: Feoli, E. and L. Orlóci (eds), Computer Assisted Vegetation Analysis. Kluwer, Dordrecht, pp. 355–371.CrossRefGoogle Scholar
  32. Olsen, E.R., R. D. Ramsey and D.S. Winn. 1993. A modified fractal dimension as a measure of landscape diversity. Photogrammetric Engineering and Remote Sensing 59:1517–1520.Google Scholar
  33. Pillar, V.D. and L. Orlóci. 1996. On randomization testing in vegetation science: multifactor comparisons of relevé groups. J. Veg. Sci. 7:585–592.CrossRefGoogle Scholar
  34. Podani, J. 2000. Introduction to the Exploration of Multivariate Biological Data. Backhuys, Leiden.Google Scholar
  35. Podani, J. 2001. SYNTAX2000. Computer Programs for Data Analysis in Ecology and Systematics. Scientia, Budapest.Google Scholar
  36. Rizzi Longo, L., F. Martini, S. Carlovich, R. Dussati, P. Ganis and M. Pizzulin Sauli. 1994. La flora urbana di Trieste: il centro storico. Atti VI Congresso Assoc. Ital. Aerobiologia p. 57.Google Scholar
  37. Tucker, C. J., C. Vanpraet, E. Boerwinkel and A. Gaston. 1983. Satellite remote sensing of total dry matter production in the Senegalese Sahel. Remote Sensing of the Environment 13: 461–474.CrossRefGoogle Scholar
  38. Turner, M.G. 1989. Landscape ecology: the effect of pattern on process. Ann. Rev. Ecol. Syst. 20:171–197.CrossRefGoogle Scholar
  39. Wittig, R., Diesing, D. and M. Gödde. 1985. Urbanophob – Urbanoneutral – Urbanophil. Das Verhalten der Arten gegenüber dem Lebensraum Stadt. Flora 177:265–282.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2006

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • A. Altobelli
    • 1
  • E. Bressan
    • 1
    Email author
  • E. Feoli
    • 1
  • P. Ganis
    • 1
  • F. Martini
    • 2
  1. 1.Department of BiologyUniversity of TriesteTriesteItaly
  2. 2.Department of BiologyUniversity of TriesteTriesteItaly

Personalised recommendations