Advertisement

Community Ecology

, Volume 7, Issue 1, pp 43–52 | Cite as

Mutualistic relationship beneficial for aphids and ants on giant hogweed (Heracleum mantegazzianum)

  • S. O. Hansen
  • J. Hattendorf
  • W. NentwigEmail author
Article

Abstract

Giant hogweed (Heracleum mantegazzianum), a weed originating from the Caucasus and invasive in Western Europe, is frequently observed with myrmecophilic aphids, ants, and non-myrmecophilic aphids. The number of individuals of the two non-myrmecophilic, leaf-sucking aphid species, Paramyzus heraclei and Cavariella theobaldi, are negatively correlated with the growth of giant hogweed in its native habitat. A cavity at the stem basis of giant hogweed, the domatium, lodges colonies of the obligate myrmecophilic, stem-sucking aphid Anuraphis subterranea. We found a positive correlation between relative plant growth, ant activity, and the number of myrmecophilic aphids. Because of the domatium size, A. subterranea populations are limited in growth and consequently the damage they inflict is limited. In contrast to the few other systems where three-partner mutualistic relationships are described, these partners appear to be more adapted to each other. This is the first report of an ant domatium from the temperate zone, and it is moreover the first experimental result presenting a system, from which a secondary domatium is able to evolve, because it is involving initial relations with aphids.

Keywords

Anuraphis subterranea Aphidina Apiaceae domatium Formicidae Invasive weed 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, A.A., Karban, R. and R.G. Colfer. 2000. How leaf domatia and induced plant resistance affect herbivores, natural enemies and plant performance. Oikos 89: 70–80.Google Scholar
  2. Aron, S., Beckers, R., Deneubourg, J.L. and J.M. Pasteels. 1993. Memory and chemical communication in the orientation of two mass-recruiting ant species. Insectes Soc. 40: 369–380.Google Scholar
  3. Bach, C.E. 1991. Direct and indirect interactions between ants (Pheidole megacephala), scales (Coccus viridis) and plants (Pluchea indica). Oecologia 87: 233–239.PubMedGoogle Scholar
  4. Baylis, M. and N. E. Pierce. 1991. The effect of host plant quality on the survival of larvae and oviposition behaviour of adults of an ant-tended lycaenid butterfly, Jalmenus evagoras. Ecol. Entomol. 16: 1–9.Google Scholar
  5. Benson, W.W. 1985. Amazon ant-plants. In: Prance, G. T. and Lovejoy, T. E. (eds.), Key Environments. Amazonia. Pergamon Press. Oxford. pp. 239–266.Google Scholar
  6. Bronstein, J. L. and P. Barbosa. 2002. Multitrophic/multispecies mutualistic interactions: the role of non-mutualists in shaping and mediating mutualisms. In: Hawkins, B. and T. Tscharntke (eds.), Multitrophic Level Interactions. Cambridge University Press, Cambridge. pp 44–65.Google Scholar
  7. Buckley, R. 1983. Interaction between ants and membracid bugs decreases growth and seed set of host plant bearing extrafloral nectaries. Oecologia 58: 132–136.PubMedGoogle Scholar
  8. Buckley, R.C. 1987. Interactions involving plants, Homoptera, and ants. Annu. Rev. Ecol. Syst. 18: 111–135.Google Scholar
  9. Caroll, C. R. and D.H. Janzen. 1973. Ecology of foraging by ants. Annu. Rev. Ecol. Syst. 4: 231–257.Google Scholar
  10. Dauber, J. and V. Wolters. 2000. Microbial activity and functional diversity in the mounds of three different ant species. Soil Biol. Biochem. 32: 93–99.Google Scholar
  11. Davidson, D. W. and D. McKey. 1993. The evolutionary ecology of symbiotic ant – plant relationships. J. Hymenoptera. Research 2: 13–83.Google Scholar
  12. El-Ziady, S. and J.S. Kennedy. 1956. Beneficial effects of the common garden ant, Lasius niger L., on the black bean aphid Aphis fabae Scopoli. Proc. R. Entomol. Soc. Lond. (A) 31: 61–65.Google Scholar
  13. Fiala, B. and U. Maschwitz. 1992. Domatia as most important adaptations in the evolution of myrmecophytes in the paleotropical tree genus Macaranga (Euphorbiaceae). Plant Syst. Evol. 180: 53–64.Google Scholar
  14. Grostal, P. and D.J. O’Dowd. 1994. Plants, mites and mutualism: leaf domatia and the abundance and reproduction of mites on Viburnum tinus (Caprifoliaceae). Oecologia 97: 308–315.PubMedGoogle Scholar
  15. Gullan, P.J. 1997. Relationship with ants. In: Ben-Dov, Y. and Hodgson, C. J. (eds.), Soft scale insects, their biology - natural enemies and control. Elsevier Science, Amsterdam. pp 351–373.Google Scholar
  16. Hansen, S.O. 2005. Interactions between the invasive weed Heracleum mantegazzianum and associated insects. PhD. thesis, University of Bern, Switzerland.Google Scholar
  17. Hansen, S.O., Hattendorf, J., Wittenberg, R., Reznik, S.Y., Nielsen, C., Ravn, H.P. and W. Nentwig. 2006. Phytophagous insect fauna of the Giant Hogweed Heracleum mantegazzianum in invaded areas of Europe and in its native area of the Caucasus. Eur. J. Entomol. 103: 387–395.Google Scholar
  18. Heie, O.E. 1992. The Aphidoidea (Hemiptera) of Fennoscandia and Denmark. IV. Family Aphididae: Part 1 of tribe Macrosiphini of subfamily Aphidinae. Fauna Entomologica Scandinavica, Vol. 25, E.J.Brill/Scandinavian Science Press Ltd., Leiden.Google Scholar
  19. Heil, M. and D, McKey. 2003. Protective ant-plant interactions as model systems in ecological and evolutionary research. Annu. Rev. Ecol. Syst. 34: 425–553.Google Scholar
  20. Hölldobler, B. and E.O. Wilson. 1990. The Ants. Harvard University Press, Cambridge. Mass.Google Scholar
  21. Horstmann, K. 1974. Investigations on food-consumption of red wood ants (Formica polyctena Foerster) in an oak forest. 3. Annual turnover. Oecologia 15: 187–204.PubMedGoogle Scholar
  22. Horstmann, K. 1982. The energy budget of wood ants (Formica polyctena Forster) in an oak forest. Insectes Soc. 29: 402–421.Google Scholar
  23. Howell, J.F. and P.A. Games. 1974. The effects of variance heterogeneity on simultaneous multiple-comparison procedures with equal sample size. Brit. J. Math. Stat. Psychol. 27: 72–81.Google Scholar
  24. Itino, T., Itioka, T., Hatada, A. and A.A. Hamid. 2001. Effects of food rewards offered by ant-plant Macaranga on the colony size of ants. Ecol. Res. 16: 775–786.Google Scholar
  25. Janzen, D.H. 1979. How to be a fig. Annu. Rev. Ecol. Syst. 10: 13–51.Google Scholar
  26. Jolivet, P. 1996. Ants and Plants. An Example of Coevolution. Backhuys publishers, Leiden.Google Scholar
  27. Koptur, S. 1984. Experimental evidence for defense of Inga (Mimosoideae) saplings by ants. Ecology 65: 1787–1793Google Scholar
  28. Messina, F.J. 1981. Plant protection as a consequence of an antmembracid mutualism: interactions on goldenrod (Solidago sp.). Ecology 62: 1433–1440.Google Scholar
  29. Morales, M.A. 2000. Mechanisms and density dependence of benefit in an ant-membracid mutualism. Ecology 81: 482–489.Google Scholar
  30. Nakamura, T., Taniguchi, T. and E. Maeda. 1992. Leaf anatomy of Coffea arabica L. with reference to domatia. Jap. J. Crop Sci. 61: 642–650.Google Scholar
  31. O’Dowd, D. J. and E.A. Catchpole. 1983. Ants and extrafloral nectaries: no evidence for plant protection in Helichrysum spp.–ant interactions. Oecologia 59: 191–200.PubMedGoogle Scholar
  32. Offenberg, J. 2000. Correlated evolution of the association between aphids and ants and the association between aphids and plants with extrafloral nectaries. Oikos 91: 146–152.Google Scholar
  33. Offenberg, J. 2001. Balancing between mutualism and exploitation: the symbiotic interaction between Lasius ants and aphids. Behav. Ecol. Sociobiol. 49: 304–310.Google Scholar
  34. Offenberg, J., Nielsen, M.G., MacIntosh, D.J., Havanon, S. and S. Aksornkoae. 2004. Evidence that insect herbivores are deterred by ant pheromones. Proc. R. Soc. Lond. (B) 271: 433–435.Google Scholar
  35. Pysek, P. and A. Pysek. 1995. Invasion by Heracleum mantegazzianum in different habitats in the Czech Republic. J. Veg. Sci. 6: 711–718.Google Scholar
  36. Schnell, R., Cusset, G., Tchinaye, V. and N.T. Anh. 1968. Contribution à l’étude des “acarodomaties”. La question des aisselles des nervures. Rev. Gén. Bot. 75: 5–64.Google Scholar
  37. Skinner, G.J. 1980 The feeding habits of the wood-ant, Formica rufa (Hymenoptera: Formicidae), in limestone woodland in Northwest England. J. Anim. Ecol. 49: 417–433.Google Scholar
  38. Stadler, B. and A.F.G. Dixon. 2005. Ecology and evolution of aphidant interactions. Annu. Rev. Ecol. Evol. Syst. 36: 345–372.Google Scholar
  39. Thompson, J.N. 1994. Coevolutionary Process. The University of Chicago Press, Chicago.Google Scholar
  40. Vasconcelos, H.L. 1993. Ant colonization of Maieta guianensis seedlings, an Amazon ant-plant. Oecologia 95: 439–443.PubMedGoogle Scholar
  41. Vrieling, K., Smit, W. and E. van der Meijden. 1991. Tritrophic interactions between aphids (Aphis jacobaeae Schrank), ant species, Tyria jacobaeae L., and Senecio jacobaea L. lead to maintenance of genetic variation in pyrrolizidine alkaloid concentration. Oecologia 86: 177–182.PubMedGoogle Scholar
  42. Way, M.J. 1954. Studies on the association of the ant Oecophylla longinoda (Latr.) (Formicidae) with the scale insect Saissetia zanzibarensis Willams (Coccidae). B. Entomol. Res. 45: 113–134.Google Scholar
  43. Way, M.J. 1963. Mutualism between ants and honey dew producing Homoptera. Annu. Rev. Entomol. 8: 307–344.Google Scholar
  44. Weber, H. 1968. Biologie der Hemipteren. A. Asher & Co., Amsterdam. pp 460–508.Google Scholar
  45. Zar, J.H. 1996. Biostatistical analysis. Prentice Hall, London.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2006

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Community Ecology, Zoological InstituteUniversity of BernBernSwitzerland

Personalised recommendations