Advertisement

Community Ecology

, Volume 7, Issue 1, pp 23–33 | Cite as

The effect of initial pattern on competitive exclusion

  • É. V. P. RáczEmail author
  • J. Karsai
Article

Abstract

We used cellular automata models to investigate the effect of initial pattern geometry on competition. We measured the average proportion of sites with foreign neighbours to track interspecific segregation during pattern development. Our simulation results show that intraspecific aggregation can considerably slow down the extinction of the weaker competitor. A series of experiments was performed to estimate the expected time to extinction for the weaker species. The perimeter-to-area ratio of the initial configuration proved to be an adequate determinant of expected time-to-extinction. Furthermore, we demonstrated that the degree of aggregation is closely related to the local density dependence of the colonization functions.

Keywords

Cellular automata Colonization Competition Local aggregation Spatiotemporal pattern 

Abbreviations

CA

Cellular Automata

IPS

Interacting Particle System

PDE

Partial Differential Equation

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amarasekare, P. 2003. Competitive coexistence in spatially structured environments: a synthesis. Ecology Letters 6:1109–1122.Google Scholar
  2. Bolker, B. M. and S. W. Pacala. 1997. Using moment equations to understand stochastically driven spatial pattern formation in ecological systems. Theor. Popul. Biol. 52:179–197.PubMedGoogle Scholar
  3. Bolker, B. M. and S. W. Pacala. 1999. Spatial moment equations for plant competition: understanding spatial strategies and the advantages of short dispersal. Am. Nat. 153:575–602.PubMedGoogle Scholar
  4. Bolker, B. M., S. W. Pacala and C. Neuhauser. 2003. Spatial dynamics in model plant communities: What do we really know? Am. Nat. 162:135–148.PubMedGoogle Scholar
  5. Burks, A. W. 1970. Von Neumann’s self-reproducting automata. In: A. W. Burks (ed), Essays on Cellular Automata. University of Illinois Press, Urbana, pp. 3–64.Google Scholar
  6. Chesson, P. and C. Neuhauser. 2002. Intraspecific aggregation and species coexistence. TREE 17: 210–211.Google Scholar
  7. Crawley, M. J. and R. M. May. 1987. Population dynamics and plant community structure: competition between annuals and perennials. J. Theor. Biol. 125: 475–489.Google Scholar
  8. Czárán, T. 1998. Spatiotemporal Models of Population and Community Dynamics. Chapman & Hall, London.Google Scholar
  9. Dieckman, U., R. Law and J. A. J. Metz (eds.), 2000. The Geometry of Ecological Interactions. Simplifying Spatial Complexity. Cambridge University Press, UK.Google Scholar
  10. Doncaster, C. P., G. E. Pound and S. J. Cox. 2003. Dynamics of regional coexistence for more or less equal competitors. J. Anim. Ecol. 72:116–126.Google Scholar
  11. Durrett, R. and S. Levin. 1998. Spatial aspects of interspecific competition. Theor. Popul. Biol. 53:30–43.PubMedGoogle Scholar
  12. Dytham, C. 1994. Habitat destruction and competitive coexistence: a cellular model. J. Anim. Ecol. 63:490–491.Google Scholar
  13. Dytham, C. 1995. The effect of habitat destruction pattern on species persistence: a cellular model. Oikos 74:340–344.Google Scholar
  14. Gandhi, A., S. Levin and S. Orszag. 1998. “Critical slowing down” in time-to-extiniction: an example of critical phenomena in ecology. J. theor. Biol. 192:363–376.PubMedGoogle Scholar
  15. Gandhi, A., S. Levin and S. Orszag. 1999. Nucleation and relaxation from meta-stability in spatial ecological models. J. theor. Biol. 200:121–146.PubMedGoogle Scholar
  16. Gause, G. F. 1934. The Struggle for Existence. Williams & Wilkins, Baltimore, Maryland, USA.Google Scholar
  17. Gaylord, R. J. and K. Nishidate. 1996. Modeling Nature: Cellular Automata Simulations with Mathematica. Springer, New York.Google Scholar
  18. Holmes, E. E. and H. B. Wilson. 1998. Running from trouble: longdistance dispersal and the competitive coexistence of inferior species. Am. Nat. 151:578–586.PubMedGoogle Scholar
  19. Ittzés, P., É. Jakó, Á. Kun, A. Kun and J. Podani. 2005. A discrete mathematical method for the analysis of spatial pattern. Community Ecology 6:177–190.Google Scholar
  20. Ives, A. R. 1988. Aggregation and the coexistence of competitors. Ann. Zool. Fennici 25:75–88.Google Scholar
  21. Kneitel, J.M. and J. M. Chase. 2004. Trade-offs in community ecology: linking spatial scales and species coexistence. Ecology Letters 7:69–90.Google Scholar
  22. Korniss, G. and T. Caraco. 2005. Spatial dynamics of invasion: the geometry of introduced species. J. theor Biol. 233: 137–150.PubMedGoogle Scholar
  23. Kun, Á. and B. Oborny. 2003. Survival and competition of clonal plant populations in spatially and temporally heterogeneous habitats. Community Ecology 4: 1–20.Google Scholar
  24. Levins, R. 1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America 15:237–240.Google Scholar
  25. Molofsky, J. 1994. Population dynamics and pattern formation in theoretical populations. Ecology 75: 30–39.Google Scholar
  26. Molofsky, J., J. D. Bever, J. Antonovics and T. J. Newman. 2002. Negative frequency dependence and the importance of spatial scale. Ecology 83:21–27.Google Scholar
  27. Molofsky, J., R. Durrett, J. Dushoff, D. Griffeath and S. Levin. 1999. Local frequency dependence and global coexistence. Theor. Popul. Biol. 55:270–282.PubMedGoogle Scholar
  28. Murray, J. D. 1989. Mathematical Biology. Springer-Verlag, Berlin, Germany.Google Scholar
  29. Murrell, D. J. and R. Law. 2003. Heteromyopia and the spatial coexistence of similar competitors. Ecology Letters 6: 48–59.Google Scholar
  30. Murrell, D. J, D. W. Purves, and R. Law. 2001. Uniting pattern and process in plant ecology. TREE 16: 529–530.Google Scholar
  31. Nee, S. and R. R. May. 1992. Dynamics of metapopulations: Habitat destruction and competitive coexistence. J. Anim. Ecol. 61:37–40.Google Scholar
  32. Neuhauser, C. 1992. Ergodic theorems for the multitype contact process. Probab. Theory Related Fields 91:467–506Google Scholar
  33. Neuhauser, C. 1998. Habitat destruction and competitive coexistence in spatially explicit models with local interactions. J. theor. Biol. 193:445–463.PubMedGoogle Scholar
  34. Neuhauser, C. 2001. Mathematical challenges in spatial ecology. Notices of the AMS 48:1304–1314.Google Scholar
  35. Pimentel, D., S. McNair, J. Wightman, C. Simmonds, C. O’Connell, E. Wong, E. Russel, J. Zern, T. Aquino, and T. Tsomondo. 2001. Economic and environmental threats of alien plant, animal and microbial invasions. Agriculture, Ecosystems and Environment 84: 1–20Google Scholar
  36. Plotkin, J. B., M. D. Potts, N. Leslie, N. Manokaran, J. LaFrankie and P. S. Ashton. 2000. Species area curves, spatial aggregation, and habitat specialization in tropical forests. J. theor. Biol. 207:81–99PubMedGoogle Scholar
  37. Rácz, É V. P. and J. Karsai. 2003. Computer simulation results for cellular automata models of some ecological systems. Folia FSN Universitatis Masarykianae Brunniensis Mathematica 13:213–221.Google Scholar
  38. Silvertown, J. 2004. Plant coexistence and the niche. TREE 19:605–611.Google Scholar
  39. Silvertown, J., Holtier, S., Johnson J. and P. Dale. 1992. Cellular automaton models of interspecific comperition for space – the effect of pattern on process. J. Ecol. 80:527–534.Google Scholar
  40. Silvertown, J. and J. B. Wilson. 2000. Spatial interactions among grassland plant populations. In: U. Dieckman, R. Law and J. A. J. Metz (eds.), The Geometry of Ecological Interactions. Simplifying Spatial Complexity. Cambridge Univ. Press, Cambridge, pp. 28–47.Google Scholar
  41. Skellam, J. G. 1951. Random dispersal in theoretical populations. Biometrika 38:196–218.PubMedPubMedCentralGoogle Scholar
  42. Tilman, D. 1994. Competition and biodiversity in spatially structured habitats. Ecology 75:2–16.Google Scholar
  43. Tilman, D. and P. Kareiva (eds) 1997. Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions. Princeton University Press, New Jersey.Google Scholar
  44. Tilman, D. and C. L. Lehman. 1997. Habitat destruction and species extinctions. In: D. Tilman, and P. Kareiva (eds), Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions. Princeton University Press, New Jersey, pp. 233–249Google Scholar
  45. Turner, M. G., R. H. Gardner and R. V. O’Neill. 1999. Landscape Ecology in Theory and Practice: Pattern and Process. Springer-Verlag, New York.Google Scholar
  46. von Neumann, J. 1966. Theory of Self-Reproducing Automata. University of Illinois Press, Urbana.Google Scholar
  47. Wolfram, S. 1986. Theory and Applications of Cellular Automata. World Scientific, Singapore.Google Scholar
  48. Wolfram, S. 2002. A New Kind of Science. Wolfram Media, Champaign, IL.Google Scholar
  49. Yu, D. W., H. B. Wilson. 2001. The competition-colonization tradeoff is dead; long live the competition-colonization trade-off. Am. Nat. 158:49–63.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2006

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Environmental EngineeringSzéchenyi István UniversityGyőrHungary
  2. 2.Department of Medical InformaticsUniversity of SzegedSzegedHungary

Personalised recommendations