Advertisement

Community Ecology

, Volume 6, Issue 2, pp 177–190 | Cite as

A discrete mathematical method for the analysis of spatial pattern

  • P. Ittzés
  • É. Jakó
  • Á. Kun
  • A. Kun
  • J. PodaniEmail author
Article
  • 1 Downloads

Abstract

A discrete mathematical method, based on the Jakó Iterative Canonical Forms (ICF) of Boolean functions is proposed for the analysis of species combinations and the detection of characteristic areas in plant communities. Information on species combinations (or florulas) appearing in a sample is expressed in compact form to reveal fundamental properties of community pattern. The new method provides a complementary tool for the florula diversity approach: whereas florula diversity is indicative of the frequency distribution of species combinations regardless their interrelationships, the new procedure detects complexity in the abstract structure of species combinations. Graph-theoretical representations of the ICF promote understanding the new method and visualizing its results. A cellular automata model and field data provide illustrative examples.

Keywords

Boolean functions Cellular automata Graphs Species pattern Vegetation 

Abbreviations

CA

Cellular Automata

CDNF

Canonical Disjunctive Normal Form

FD

Florula Diversity

ICF

Iterative Canonical Form

NSC

Number of species combinations

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartha, S. 1992. Preliminary scaling for multi-species coalitions in primary succession. Abstracta Botanica 16:31–41.Google Scholar
  2. Bartha, S., T. Czárán and J. Podani. 1998. Exploring plant community dynamics in abstract coenostate spaces. Abstracta Botanica 22:49–66.Google Scholar
  3. Bartha, S., T. Rédei, Gy. Szollát, J. Bódis and L. Mucina. 1998. Compositional diversity and fine-scale spatial patterns of dolomite grasslands on contrasting slopes. In: Csontos, P. (ed.), Sziklagyepek szünbotanikai kutatása. Zólyomi Bálint professzor emlékének. Scientia Kiadó, Budapest. pp. 159–182.Google Scholar
  4. Collins, S.L. 1992. Fire frequency and community heterogeneity in tallgrass prairie vegetation. Ecology 73: 2001–2006.CrossRefGoogle Scholar
  5. Dale, M.R.T. 1977. Graph theoretical analysis of the phytosociological structure of plant communities: the theoretical basis. Vegetatio 34: 137–154.CrossRefGoogle Scholar
  6. Erschbamer, B., G. Grabherr and H. Reisigl. 1983. Spatial pattern in dry grassland communities of the Central Alps and its ecophysiological significance. Plant Ecology 54: 143–151.CrossRefGoogle Scholar
  7. Frolov, A. and É. Jakó. 1991. Algorithms for recognition of partially ordered objects and their application. Scripta Technica 29: 109–118.Google Scholar
  8. Greig-Smith, P. 1983. Quantitative Plant Ecology. 2nd ed. Blackwell, Oxford.Google Scholar
  9. Herben, T., F. Krahulec, V. Hadincová and S. Pecháčková. 1997. Is a grassland community composed of coexisting species with low and high spatial mobility? Folia Geobot. Phytotax. 29:459–468.CrossRefGoogle Scholar
  10. Jakó, É. 1983. Iterative Canonical Decomposition of Boolean Functions and its Application to Logical Design.. PhD Thesis, Technical University, Moscow.Google Scholar
  11. Jakó, É. (manuscript). Recognition and classification of discrete objects by Iterative Canonical Forms (ICF) of Boolean functions. Journal of Mathematical Chemistry.Google Scholar
  12. Jakó É. and P. Ittzés. 1998. A discrete mathematical approach to the analysis of spatial pattern. Abstracta Botanica 22:121–142.Google Scholar
  13. Juhász-Nagy, P. 1976. Spatial dependence of plant populations. I. Equivalence analysis (an outline for a new model). Acta Bot. Hung. 22: 61–78.Google Scholar
  14. Juhász-Nagy, P. and J. Podani. 1983. Information theory methods for the study of spatial processes and succession. Vegetatio 51:129–140.CrossRefGoogle Scholar
  15. Klimeš, L. 1999. Small-scale plant mobility in a species-rich grassland. Journal of Vegetation Science 10: 209–218.CrossRefGoogle Scholar
  16. Kun, A., P. Ittzés and D. Krasser. 2000. Coenological gradients in the Hungarian rocky vegetation I. Landscape-level studies. V. Magyar Ökológus Kongresszus elõadásainak és posztereinek kivonatai. Debrecen, 2000. p. 93.Google Scholar
  17. McIntosh, R. 1973. Matrix and plexus techniques. In: R. H. Whittaker (ed.), Ordination and Classification of Plant Communities. Junk, The Hague. pp. 157–191.CrossRefGoogle Scholar
  18. Mucina, L. and S. Bartha. 1999. Variance in species richness and guild proportionality in two contrasting dry grassland communities. Biologia (Bratislava) 54: 67–75.Google Scholar
  19. Pärtel, M. and M. Zobel. 1995. Small-scale dynamics and species richness in successional alvar plant communities. Ecography 18: 83–90.CrossRefGoogle Scholar
  20. Podani, J. 1984. Analysis of mapped and simulated vegetation patterns by means of computerized sampling techniques. Acta Bot. Hung. 30: 403–425.Google Scholar
  21. Podani, J. 1994. Multivariate analysis in ecology and systematics. SPB Publishing, The Hague, The Netherlands.Google Scholar
  22. Podani, J., T. Czárán and S. Bartha. 1993. Pattern, area and diversity: the importance of spatial scale in species assemblages. Abstracta Botanica 17:37–52.Google Scholar
  23. Szõcs, Z. 1977. New computer-oriented methods for the study of natural and simulated vegetation structure. In: L. Orlóci, C. R. Rao and W. M. Stiteler (eds.), Multivariate Methods in Ecological Work. International Co-operative Publishing House, Burtonsville, MD, USA. pp. 301–308Google Scholar
  24. van der Maarel, E. 1996. Pattern and process in the plant community: fifty years after A.S. Watt. Journal of Vegetation Science 7: 19–28.CrossRefGoogle Scholar
  25. Wikberg, S. and B.M. Svensson. 2003. Ramet demography in a ring-forming clonal sedge. Journal of Ecology 91: 847–854.CrossRefGoogle Scholar
  26. Wimberly, M.C. and T.A. Spies. 2001. Influences of environment and disturbance on forest patterns in coastal Oregon watersheds. Ecology 82: 1443–1459.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2005

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • P. Ittzés
    • 1
  • É. Jakó
    • 2
    • 3
  • Á. Kun
    • 1
    • 3
  • A. Kun
    • 4
  • J. Podani
    • 3
    Email author
  1. 1.Collegium BudapestBudapestHungary
  2. 2.Research Group of Ecology and Theoretical BiologyHungarian Academy of Sciences and Eötvös UniversityBudapestHungary
  3. 3.Department of Plant Taxonomy and EcologyEötvös UniversityBudapestHungary
  4. 4.Research Institute for Botany and EcologyHungarian Academy of SciencesVácrátótHungary

Personalised recommendations