A comparison of vegetation patterns in the tree and herb layers of a hardwood forest

Abstract

Meta-analysis is used to compare the patterns of the tree and the herb layers in a Central-European deciduous hardwood forest. Vegetation patterns are represented by distance matrices and dendrograms. The significance of the relation between the patterns is evaluated through permutation (Mantel) tests and full randomization (Monte Carlo simulation) tests. The relationship between the two layers is significant but weak. When using ecological indicators as variables for characterising the herb layer, the relation is stronger. Distance matrices and dendrograms describe the vegetation pattern similarly. However, the results of pairwise tests of significance strongly depend on the “level” of comparisons, i.e., whether distance matrices or dendrograms are compared. This follows perhaps from the differences between permutation and full randomization tests.

Abbreviations

98:

herb data collected in the summer

99:

herb data collected in the spring

A:

basal area of the tree species

Ch:

chord distance

CO:

combined data of the herbs

Eu:

Euclidean distance

i:

frequency data of the ecological indices

N:

abundance of the tree species

ns:

no standardization

R:

relative basal area of the tree species

rs:

range standardization. (For example, Euns98 refers to one distance matrix or one dendrogram obtained from species frequency data of the summer herb layer with Euclidean distance and without standardization. Euns98i refers to one distance matrix or one dendrogram obtained in the same way, but from the quadrats by ecological indicators data matrix

References

  1. Aude, E. and J. E. Lawesson. 1998. Vegetation in Danish beech forests: the importance of soil, microclimate and management factors, evaluated by variation partitioning. Plant Ecology 134: 53–65.

    Article  Google Scholar 

  2. Batagelj, V. 1995. Comparing resemblance measures. J. Classification 12: 73–90.

    Article  Google Scholar 

  3. Berger, A. C. and K. J. Puettmann. 2000. Overstory composition and stand structure influence herbaceous plant diversity in the mixed aspen forest of northern Minnesota. Am. Midl. Nat. 143: 111–125.

    Article  Google Scholar 

  4. Borhidi, A. 1995. Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian Flora. Acta Bot. Hung. 39: 97–181.

    Google Scholar 

  5. Bormann, F. H. and G. E. Likens. 1981. Pattern and Process in a Forested Ecosystem. Springer, New York.

    Google Scholar 

  6. Bradfield, G. E. and A. Scagel. 1984. Correlations among vegetation strata and environment variables in subalpine spruce-fir forests, southeastern British Columbia. Vegetatio 55: 105–114.

    Google Scholar 

  7. Bratton, S. P. 1975. A comparison of the beta diversity functions of the overstory of a deciduous forest. Bull. Torrey Bot. Club 102: 55–60.

    Article  Google Scholar 

  8. Brunet, J., U. Falkengren-Grerup and G. Tyler. 1996. Herb layer vegetation of south Swedish beech and oak forests - effects of management and soil acidity during one decade. Forest Ecol. Manage. 88: 259–272.

    Article  Google Scholar 

  9. Cajander, A. K. 1926. The theory of forest types. Acta Forest. Fenn. 29: 1–108.

    Google Scholar 

  10. Campbell, B. M. 1978. Similarity coefficients for classifying relevés. Vegetatio 37: 101–109.

    Article  Google Scholar 

  11. Danszky, I. (ed.) 1963. Magyarország erdőgazdasági tájainak erdőfelújitási, erdőtelepitési irányelvei és eljárásai. Országos Erdészeti Főigazgatóság, Budapest.

    Google Scholar 

  12. Del Moral, R. and A. F. Watson. 1978. Gradient structure of forest vegetation in the Central Washington Cascades. Vegetatio 38: 29–48.

    Article  Google Scholar 

  13. Ewald, J. 2000. The influence of coniferous canopies on understorey vegetation and soils in mountain forests of the northern Calcareous Alps. Appl. Veg. Sci. 3: 123–134.

    Article  Google Scholar 

  14. Fekete, G. 1974. Tölgyesek relatív megvilágítása és a gyepszint fajainak eloszlása (in Hungarian). Studia Bot. Hung. 9: 87–96.

    Google Scholar 

  15. Feoli, E. 1984. Some aspects of classification and ordination of vegetation data in perspective. Stud. Geobot. 4: 7–21.

    Google Scholar 

  16. Feoli E., L. Orlóci and M. Scimone. 1984. Comparison of ordinations of some Appennine forest communities based on different characters and methods. Stud. Geobot. 4: 137–145.

    Google Scholar 

  17. Gagnon, D. and G. E. Bradfield. 1986. Relationships among forest strata and environment in Southern Coastal British Columbia. Can. J. For. Res. 16: 1264–1271.

    Article  Google Scholar 

  18. Gauch, H. G. and R. H. Whittaker. 1972. Comparison of ordination techniques. Ecology 53: 868–875.

    Article  Google Scholar 

  19. Gilliam, F. S. 2002. Effects of harvesting on herbaceous layer diversity of a central Appalachian hardwood forest in West Virginia, USA. Forest Ecol Manage. 155: 33–42.

    Article  Google Scholar 

  20. Gilliam, F. S., N. L. Turrill and M. B. Adams. 1995. Herbaceouslayer and overstory in clear-cut and mature central Appalachian hardwood forests. Ecol. Applic. 5: 947–955.

    Article  Google Scholar 

  21. Glass, G. V. 1976. Primary, secondary and meta-analysis of research. Educational Researcher 5: 3–8.

    Article  Google Scholar 

  22. Glenn-Levin, C. 1977. Species diversity in North American temperate forests. Vegetatio 33: 153–162.

    Google Scholar 

  23. Gower, J. C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325–338.

    Article  Google Scholar 

  24. Gower, J. C. 1971. Statistical methods of comparing different multivariate analyses of the same data. In: F. R. Hodson, D. G. Kendall and P. Tautu (eds.), Mathematics in the Archaeological and Historical Sciences. Edinburgh Univ. Press, Edinburgh. pp. 138–149.

    Google Scholar 

  25. Green, B. F. 1952. The orthogonal approximation of an oblique structure in factor analysis. Psychometrika 17: 429–440.

    Article  Google Scholar 

  26. Grigal, D. F. and H. F. Arnemann. 1978. Quantitative relationships among vegetation and soil classification from northeastern Minnesota. Can. J. Bot. 48: 555–566.

    Article  Google Scholar 

  27. Hajdu, L. J. 1981. Graphical comparison of resemblance measures in phytosociology. Vegetatio 48: 47–59.

    Article  Google Scholar 

  28. Halpern, C. B. 1989. Early successional patterns of forest species: interactions of life history traits and disturbance. Ecology 70: 704–720.

    Article  Google Scholar 

  29. Halpern, C. B. and J. F. Franklin. 1990. Physiognomic development of Pseudotsuga forests in relation to initial structure and disturbance intensity. J. Veg. Sci. 1: 475–482.

    Article  Google Scholar 

  30. Halpern, C. B. and T. A. Spies. 1995. Plant species diversity in natural and managed forests of the Pacific northwest. Ecol. Applic. 5: 913–934.

    Article  Google Scholar 

  31. Hughes, J. W. and T. J. Fahey. 1991. Colonization dynamics of herbs and shrubs in a disturbed northern hardwood forest. J. Ecol. 79: 605–616.

    Article  Google Scholar 

  32. Járó, Z. 1962. Termőhelyi tényezők ismertetése. In: A. Majer (ed.), Erdő- és termőhelytipológiai útmutató. Országos Erdészeti Főigazgatóság, Budapest, pp. 11–69 (in Hungarian).

    Google Scholar 

  33. Kenkel, N. C. and L. Orlóci. 1986. Applying metric and nonmetric multidimensional scaling to ecological studies: some new results. Ecology 67: 919–928.

    Article  Google Scholar 

  34. McCune, B. and J. Antos. 1981. Correlations between forest layers in the Swan Valley, Montana. Ecology 62: 1196–1204.

    Article  Google Scholar 

  35. McKenzie, D., C. B. Halpern and C. R. Nelson. 2000. Overstory influences on herb and shrub communities in mature forests of western Washington, USA. Can. J. For. Res. 30: 1655–1666.

    Article  Google Scholar 

  36. Mantel, N. 1967. The detection of desease clustering and a generalized regression approach. Cancer Res. 27: 209–220.

    CAS  Google Scholar 

  37. Miyata, I. 1983. Influence of vegetation structure of the tree layer on development of the herb layer in a secondary forest. Jap. J. Ecol. 33: 71–78.

    Google Scholar 

  38. Orlóci, L. 1978. Multivariate Analysis in Vegetation Research. 2nd edition Junk, The Hague.

    Google Scholar 

  39. Peet, R. K. 1978. Forest vegetation of the Colorado front range: patterns of species diversity. Vegetatio 37: 65–78.

    Article  Google Scholar 

  40. Podani, J. 1985. Syntaxonomic congruence in a small - scale vegetation survey. Abstracta Botanica 9: 99–128.

    Google Scholar 

  41. Podani, J. 1989a. A method for generating consensus partitions and its application to community classification. Coenoses 4: 1–10.

    Google Scholar 

  42. Podani, J. 1989b. Comparison of ordinations and classifications of vegetation data. Vegetatio 83: 111–128.

    Article  Google Scholar 

  43. Podani, J. 1991. On the standardization of Procrustes statistics for the comparison of ordinations. Abstracta Botanica 15: 43–46.

    Google Scholar 

  44. Podani, J. 1993. SYN-TAX-pc, Computer Programs for Multivariate Data Analysis in Ecology and Systematics. Version 5.0. User’s Guide. Scientia Publishing, Budapest.

    Google Scholar 

  45. Podani, J. 2000. Introduction to the Exploration of Multivariate Biological Data. Backhuys, Leiden.

    Google Scholar 

  46. Podani, J. 2001. SYN-TAX 2000 computer program for data analysis in ecology and systematics for WINDOWS 95, 98 and NT. User’s manual. Scientia Publishing, Budapest.

  47. Podani, J. and T. A. Dickinson. 1984. Comparison of dendrograms: a multivariate approach. Can. J. Bot. 62: 2765–2778.

    Article  Google Scholar 

  48. Sayers, C. L. and J. Lyon. 1997. Gradient analysis in a riparian landscape: contrast among forest layers. Forest Ecol. Manage. 96: 13–26.

    Article  Google Scholar 

  49. Schönemann, P. H. and R. M. Caroll. 1970. Fitting one matrix to another under choice of a central dilation and a rigid motion. Psychometrika 35: 245–256.

    Article  Google Scholar 

  50. Simon, T. 2000. A magyarországi edényes flóra határozója. Harasztok-virágos növények. Nemzeti Tankönyvkiadó, Budapest, (in Hungarian).

    Google Scholar 

  51. Skov, F. 1997. Stand and neighbourhood parameters as determinants of plant species richness in a managed forest. J. Veg. Sci. 8: 573–578.

    Article  Google Scholar 

  52. Sneath, P. H. A. and R. R. Sokal. 1973. Numerical Taxonomy. Freeman, San Fransisco.

    Google Scholar 

  53. Sokal, R. R. and F. J. Rohlf. 1962. The comparison of dendrograms by objective methods. Taxon 11: 33–40.

    Article  Google Scholar 

  54. Steel, M. A. and D. Penny. 1993. Distributions of tree comparison metrics - some new results. Syst. Biol. 42: 126–141.

    Google Scholar 

  55. Tobisch, T. 2000. A faállomány-szerkezet és az aljnövényzet kapcsolatának vizsgálata egy lombhullató gazdasági erdőben. MSc. Thesis (in Hungarian). Department of Plant Taxonomy and Ecology, L. Eötvös University, Hungary.

    Google Scholar 

  56. Torgerson, W. S. 1952. Multidimensional scaling: I. Theory and method. Psychometrika 17: 401–419.

    Article  Google Scholar 

  57. Whitney, G. C. and D. R. Foster. 1988. Overstorey composition and age as determinants of the understorey flora of woods of central New England. J. Ecol. 76: 867–876.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Tobisch.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Tobisch, T., Standovár, T. A comparison of vegetation patterns in the tree and herb layers of a hardwood forest. COMMUNITY ECOLOGY 6, 29–37 (2005). https://doi.org/10.1556/ComEc.6.2005.1.4

Download citation

Keyword

  • Dendrogram
  • Distance matrix
  • Forest layers
  • Full randomization tests
  • Mantel-test
  • Meta-analysis
  • Monte Carlo simulation
  • Pattern
  • Permutation tests