Community Ecology

, Volume 6, Issue 1, pp 29–37 | Cite as

A comparison of vegetation patterns in the tree and herb layers of a hardwood forest

  • T. TobischEmail author
  • T. Standovár


Meta-analysis is used to compare the patterns of the tree and the herb layers in a Central-European deciduous hardwood forest. Vegetation patterns are represented by distance matrices and dendrograms. The significance of the relation between the patterns is evaluated through permutation (Mantel) tests and full randomization (Monte Carlo simulation) tests. The relationship between the two layers is significant but weak. When using ecological indicators as variables for characterising the herb layer, the relation is stronger. Distance matrices and dendrograms describe the vegetation pattern similarly. However, the results of pairwise tests of significance strongly depend on the “level” of comparisons, i.e., whether distance matrices or dendrograms are compared. This follows perhaps from the differences between permutation and full randomization tests.


Dendrogram Distance matrix Forest layers Full randomization tests Mantel-test Meta-analysis Monte Carlo simulation Pattern Permutation tests 



herb data collected in the summer


herb data collected in the spring


basal area of the tree species


chord distance


combined data of the herbs


Euclidean distance


frequency data of the ecological indices


abundance of the tree species


no standardization


relative basal area of the tree species


range standardization. (For example, Euns98 refers to one distance matrix or one dendrogram obtained from species frequency data of the summer herb layer with Euclidean distance and without standardization. Euns98i refers to one distance matrix or one dendrogram obtained in the same way, but from the quadrats by ecological indicators data matrix


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aude, E. and J. E. Lawesson. 1998. Vegetation in Danish beech forests: the importance of soil, microclimate and management factors, evaluated by variation partitioning. Plant Ecology 134: 53–65.CrossRefGoogle Scholar
  2. Batagelj, V. 1995. Comparing resemblance measures. J. Classification 12: 73–90.CrossRefGoogle Scholar
  3. Berger, A. C. and K. J. Puettmann. 2000. Overstory composition and stand structure influence herbaceous plant diversity in the mixed aspen forest of northern Minnesota. Am. Midl. Nat. 143: 111–125.CrossRefGoogle Scholar
  4. Borhidi, A. 1995. Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian Flora. Acta Bot. Hung. 39: 97–181.Google Scholar
  5. Bormann, F. H. and G. E. Likens. 1981. Pattern and Process in a Forested Ecosystem. Springer, New York.Google Scholar
  6. Bradfield, G. E. and A. Scagel. 1984. Correlations among vegetation strata and environment variables in subalpine spruce-fir forests, southeastern British Columbia. Vegetatio 55: 105–114.Google Scholar
  7. Bratton, S. P. 1975. A comparison of the beta diversity functions of the overstory of a deciduous forest. Bull. Torrey Bot. Club 102: 55–60.CrossRefGoogle Scholar
  8. Brunet, J., U. Falkengren-Grerup and G. Tyler. 1996. Herb layer vegetation of south Swedish beech and oak forests - effects of management and soil acidity during one decade. Forest Ecol. Manage. 88: 259–272.CrossRefGoogle Scholar
  9. Cajander, A. K. 1926. The theory of forest types. Acta Forest. Fenn. 29: 1–108.Google Scholar
  10. Campbell, B. M. 1978. Similarity coefficients for classifying relevés. Vegetatio 37: 101–109.CrossRefGoogle Scholar
  11. Danszky, I. (ed.) 1963. Magyarország erdőgazdasági tájainak erdőfelújitási, erdőtelepitési irányelvei és eljárásai. Országos Erdészeti Főigazgatóság, Budapest.Google Scholar
  12. Del Moral, R. and A. F. Watson. 1978. Gradient structure of forest vegetation in the Central Washington Cascades. Vegetatio 38: 29–48.CrossRefGoogle Scholar
  13. Ewald, J. 2000. The influence of coniferous canopies on understorey vegetation and soils in mountain forests of the northern Calcareous Alps. Appl. Veg. Sci. 3: 123–134.CrossRefGoogle Scholar
  14. Fekete, G. 1974. Tölgyesek relatív megvilágítása és a gyepszint fajainak eloszlása (in Hungarian). Studia Bot. Hung. 9: 87–96.Google Scholar
  15. Feoli, E. 1984. Some aspects of classification and ordination of vegetation data in perspective. Stud. Geobot. 4: 7–21.Google Scholar
  16. Feoli E., L. Orlóci and M. Scimone. 1984. Comparison of ordinations of some Appennine forest communities based on different characters and methods. Stud. Geobot. 4: 137–145.Google Scholar
  17. Gagnon, D. and G. E. Bradfield. 1986. Relationships among forest strata and environment in Southern Coastal British Columbia. Can. J. For. Res. 16: 1264–1271.CrossRefGoogle Scholar
  18. Gauch, H. G. and R. H. Whittaker. 1972. Comparison of ordination techniques. Ecology 53: 868–875.CrossRefGoogle Scholar
  19. Gilliam, F. S. 2002. Effects of harvesting on herbaceous layer diversity of a central Appalachian hardwood forest in West Virginia, USA. Forest Ecol Manage. 155: 33–42.CrossRefGoogle Scholar
  20. Gilliam, F. S., N. L. Turrill and M. B. Adams. 1995. Herbaceouslayer and overstory in clear-cut and mature central Appalachian hardwood forests. Ecol. Applic. 5: 947–955.CrossRefGoogle Scholar
  21. Glass, G. V. 1976. Primary, secondary and meta-analysis of research. Educational Researcher 5: 3–8.CrossRefGoogle Scholar
  22. Glenn-Levin, C. 1977. Species diversity in North American temperate forests. Vegetatio 33: 153–162.Google Scholar
  23. Gower, J. C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325–338.CrossRefGoogle Scholar
  24. Gower, J. C. 1971. Statistical methods of comparing different multivariate analyses of the same data. In: F. R. Hodson, D. G. Kendall and P. Tautu (eds.), Mathematics in the Archaeological and Historical Sciences. Edinburgh Univ. Press, Edinburgh. pp. 138–149.Google Scholar
  25. Green, B. F. 1952. The orthogonal approximation of an oblique structure in factor analysis. Psychometrika 17: 429–440.CrossRefGoogle Scholar
  26. Grigal, D. F. and H. F. Arnemann. 1978. Quantitative relationships among vegetation and soil classification from northeastern Minnesota. Can. J. Bot. 48: 555–566.CrossRefGoogle Scholar
  27. Hajdu, L. J. 1981. Graphical comparison of resemblance measures in phytosociology. Vegetatio 48: 47–59.CrossRefGoogle Scholar
  28. Halpern, C. B. 1989. Early successional patterns of forest species: interactions of life history traits and disturbance. Ecology 70: 704–720.CrossRefGoogle Scholar
  29. Halpern, C. B. and J. F. Franklin. 1990. Physiognomic development of Pseudotsuga forests in relation to initial structure and disturbance intensity. J. Veg. Sci. 1: 475–482.CrossRefGoogle Scholar
  30. Halpern, C. B. and T. A. Spies. 1995. Plant species diversity in natural and managed forests of the Pacific northwest. Ecol. Applic. 5: 913–934.CrossRefGoogle Scholar
  31. Hughes, J. W. and T. J. Fahey. 1991. Colonization dynamics of herbs and shrubs in a disturbed northern hardwood forest. J. Ecol. 79: 605–616.CrossRefGoogle Scholar
  32. Járó, Z. 1962. Termőhelyi tényezők ismertetése. In: A. Majer (ed.), Erdő- és termőhelytipológiai útmutató. Országos Erdészeti Főigazgatóság, Budapest, pp. 11–69 (in Hungarian).Google Scholar
  33. Kenkel, N. C. and L. Orlóci. 1986. Applying metric and nonmetric multidimensional scaling to ecological studies: some new results. Ecology 67: 919–928.CrossRefGoogle Scholar
  34. McCune, B. and J. Antos. 1981. Correlations between forest layers in the Swan Valley, Montana. Ecology 62: 1196–1204.CrossRefGoogle Scholar
  35. McKenzie, D., C. B. Halpern and C. R. Nelson. 2000. Overstory influences on herb and shrub communities in mature forests of western Washington, USA. Can. J. For. Res. 30: 1655–1666.CrossRefGoogle Scholar
  36. Mantel, N. 1967. The detection of desease clustering and a generalized regression approach. Cancer Res. 27: 209–220.Google Scholar
  37. Miyata, I. 1983. Influence of vegetation structure of the tree layer on development of the herb layer in a secondary forest. Jap. J. Ecol. 33: 71–78.Google Scholar
  38. Orlóci, L. 1978. Multivariate Analysis in Vegetation Research. 2nd edition Junk, The Hague.Google Scholar
  39. Peet, R. K. 1978. Forest vegetation of the Colorado front range: patterns of species diversity. Vegetatio 37: 65–78.CrossRefGoogle Scholar
  40. Podani, J. 1985. Syntaxonomic congruence in a small - scale vegetation survey. Abstracta Botanica 9: 99–128.Google Scholar
  41. Podani, J. 1989a. A method for generating consensus partitions and its application to community classification. Coenoses 4: 1–10.Google Scholar
  42. Podani, J. 1989b. Comparison of ordinations and classifications of vegetation data. Vegetatio 83: 111–128.CrossRefGoogle Scholar
  43. Podani, J. 1991. On the standardization of Procrustes statistics for the comparison of ordinations. Abstracta Botanica 15: 43–46.Google Scholar
  44. Podani, J. 1993. SYN-TAX-pc, Computer Programs for Multivariate Data Analysis in Ecology and Systematics. Version 5.0. User’s Guide. Scientia Publishing, Budapest.Google Scholar
  45. Podani, J. 2000. Introduction to the Exploration of Multivariate Biological Data. Backhuys, Leiden.Google Scholar
  46. Podani, J. 2001. SYN-TAX 2000 computer program for data analysis in ecology and systematics for WINDOWS 95, 98 and NT. User’s manual. Scientia Publishing, Budapest.Google Scholar
  47. Podani, J. and T. A. Dickinson. 1984. Comparison of dendrograms: a multivariate approach. Can. J. Bot. 62: 2765–2778.CrossRefGoogle Scholar
  48. Sayers, C. L. and J. Lyon. 1997. Gradient analysis in a riparian landscape: contrast among forest layers. Forest Ecol. Manage. 96: 13–26.CrossRefGoogle Scholar
  49. Schönemann, P. H. and R. M. Caroll. 1970. Fitting one matrix to another under choice of a central dilation and a rigid motion. Psychometrika 35: 245–256.CrossRefGoogle Scholar
  50. Simon, T. 2000. A magyarországi edényes flóra határozója. Harasztok-virágos növények. Nemzeti Tankönyvkiadó, Budapest, (in Hungarian).Google Scholar
  51. Skov, F. 1997. Stand and neighbourhood parameters as determinants of plant species richness in a managed forest. J. Veg. Sci. 8: 573–578.CrossRefGoogle Scholar
  52. Sneath, P. H. A. and R. R. Sokal. 1973. Numerical Taxonomy. Freeman, San Fransisco.Google Scholar
  53. Sokal, R. R. and F. J. Rohlf. 1962. The comparison of dendrograms by objective methods. Taxon 11: 33–40.CrossRefGoogle Scholar
  54. Steel, M. A. and D. Penny. 1993. Distributions of tree comparison metrics - some new results. Syst. Biol. 42: 126–141.Google Scholar
  55. Tobisch, T. 2000. A faállomány-szerkezet és az aljnövényzet kapcsolatának vizsgálata egy lombhullató gazdasági erdőben. MSc. Thesis (in Hungarian). Department of Plant Taxonomy and Ecology, L. Eötvös University, Hungary.Google Scholar
  56. Torgerson, W. S. 1952. Multidimensional scaling: I. Theory and method. Psychometrika 17: 401–419.CrossRefGoogle Scholar
  57. Whitney, G. C. and D. R. Foster. 1988. Overstorey composition and age as determinants of the understorey flora of woods of central New England. J. Ecol. 76: 867–876.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2005

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Sylviculture and YieldForest Research InstituteBudapestHungary
  2. 2.Department of Plant Taxonomy and EcologyEötvös UniversityBudapestHungary

Personalised recommendations