Advertisement

Community Ecology

, Volume 5, Issue 2, pp 159–162 | Cite as

A scale-free approach to subtaxon-to-taxon ratios

  • M. Marignani
  • C. RicottaEmail author
  • F. Rossi
  • A. Pavesi
  • G. C. Avena
Article

Abstract

Subtaxon-to-taxon ratios such as the species-to-genus ratio have been frequently used in ecology and biogeography despite their well-known sample size dependence. For instance, any subtaxon-to-taxon ratio is an increasing function of the area sampled. Hence, its validity as an ecological indicator is problematic at best. This drawback can be avoided by constructing taxon-subtaxon curves. Owing to their scale-free nature, taxon-subtaxon curves standardize the information in subtaxon-to-taxon ratios allowing for meaningful comparison of datasets.

Keywords

Sample size dependence Scaling Taxon-area curves Taxonomic diversity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrhenius, O 1923. Statistical investigation in the constitution of plant associations. Ecology 4:68–73.CrossRefGoogle Scholar
  2. Cronquist, A. 1988. The Evolution and Classification of Flowering Plants. The New York Botanical Garden Press, New York.Google Scholar
  3. Dale, M.B. 1998. Space, scale and description. In: N.C. Kenkel and J. Podani (eds.), Scale, Pattern, Fractals and Diversity. Scientia Publishing, Budapest, pp. 67–80.Google Scholar
  4. Efron, B. 1982. The Jackknife, the Bootstrap, and other Resampling Plans. SIAM, Philadelphia.CrossRefGoogle Scholar
  5. Engen, S 1976. A note on the estimation of the species-area curve. J. Cons. Int. Explor. Mer 36:286–288.CrossRefGoogle Scholar
  6. Enquist, B.J., J.P. Haskell and B.H. Tiffney 2002. General patterns of taxonomic partitioning in extant and fossils communities. Nature 419:610–613.CrossRefGoogle Scholar
  7. Gotelli, N.J. and R.K. Colwell 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4:379–391.CrossRefGoogle Scholar
  8. Howard, P.C., P. Viskanic, T.R.B. Davenport, F.W. Kigenyi, M. Baltzer, C.J. Dickinson, J.S. Lwanga, R.A. Matthews and A. Balmford. 1998 Complementarity and the use of indicator groups for reserve selection in Uganda. Nature 394:472–475.CrossRefGoogle Scholar
  9. Järvinen, O 1982. Species-to-genus ratios in biogeography: a historical note. J. Biogeogr. 9:363–370.CrossRefGoogle Scholar
  10. Kobayashi, S 1974. The species-area relation I. A model for discrete sampling. Res. Popul. Ecol. 15:223–237.CrossRefGoogle Scholar
  11. Maillefer, A 1929. Le coefficient générique de P. Jaccard et sa signification. Mém. Soc. Vaudoise Sci. Nat. 3:113–183.Google Scholar
  12. Mandelbrot, B.B. 1982. The Fractal Geometry of Nature. Freeman, San Francisco.Google Scholar
  13. Palmer, M.W 1990. The estimation of species richness by extrapolation. Ecology 71:1195–1198.CrossRefGoogle Scholar
  14. Pavesi, A. and M.L. Leporatti 1998. La flora vascolare del Monte Testaccio in Roma (Lazio). Inf. Bot. Ital. 30:37–46.Google Scholar
  15. Pólya, G 1930. Eine Wahrscheinlichkeitsaufgabe in der Pflanzensoziologie. Vierteljahrsschr. Nat. Ges. Zürich 75:211–219.Google Scholar
  16. Rosenzweig, M.L. 1995. Species Diversity in Space and Time. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  17. Rosenzweig, M.L 2003. Reconciliation ecology and the future of species diversity. Oryx 37:194–205.CrossRefGoogle Scholar
  18. Scheiner, S.M 2003. Six types of species-area curves. Global Ecol Biogeogr. 12:441–447.CrossRefGoogle Scholar
  19. Schoener, T.W. 1976. The species-area relation within archipelagos: models and evidence from island land birds. In: H.J. Frith and J.H. Calaby (eds.), Proceedings of the 16th International Onthological Conference. Australian Academy of Science, Canberra, pp. 629–642.Google Scholar
  20. Simberloff, D.S 1970. Taxonomic diversity of island biotas. Evolution 24:23–47.CrossRefGoogle Scholar
  21. Tjørve, E 2003. Shapes and functions of species-area curves: a review of possible models. J. Biogeogr. 30:827–835.CrossRefGoogle Scholar
  22. Veech, J.A., K.S. Summerville, T.O. Crist and J.C Gering 2002. The additive partitioning of species diversity: recent revival of an old idea. Oikos 99:3–9.CrossRefGoogle Scholar
  23. Webb, C.O 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am. Nat. 156:145–155.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2004

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • M. Marignani
    • 1
  • C. Ricotta
    • 1
    Email author
  • F. Rossi
    • 1
  • A. Pavesi
    • 1
  • G. C. Avena
    • 1
  1. 1.Department of Plant BiologyUniversity of Rome “La Sapienza”RomeItaly

Personalised recommendations