Community Ecology

, Volume 5, Issue 2, pp 247–255 | Cite as

Weed seedbank and vegetation dynamics in summer crops under two contrasting tillage regimes

  • D. TuescaEmail author
  • L. Nisensohn
  • S. Boccanelli
  • P. Torres
  • J. P. Lewis


Knowledge of the weed seedbank composition, dynamics and relationships with the emergent weed community, is necessary to improve weed management practices. Field research was made over three years in a maize (Zea mays L.)-soybean (Glycine max (L.) Merr.) crop rotation under two contrasting tillage regimes [conventional (CT) and no-till (NT)] to evaluate (i) changes in the weed seedbank and in the emerged community and (ii) to determine if the soil seedbank composition has any predictive value for the composition of the emergent weed community. The experiment was a randomised complete block design. Each year, after crop planting, samples of the seedbank were taken, then the seeds were extracted by washing soil samples through a sieve. Weed emergence was recorded during the first month after planting. Data were analysed with Principal Components Analysis and diversity was estimated using the Shannon index. Although the most abundant species found in the seedbank were always present in the above-ground community, percentage recruitment varied markedly between tillage regimes and years. The degree of soil disturbance, timing of tillage practices, crop rotation and planting date act as filters which allow or prevent the germination and emergence of weeds. The results indicated that knowledge of soil seedbank composition alone has relatively little predictive value for the composition of the emergent weed community.


Crop rotations Population dynamics Seed extraction Seed germination Soil disturbance 



Conventional Tillage


No Tillage


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, M.J 2001. A new method for non-parametric multivariate analysis of variance. Austral. J. Ecol. 26:32–46.Google Scholar
  2. Ball, D.A. and S.D. Miller 1989. A comparison of techniques for estimation of arable soil seed banks and their relationship to weed flora. Weed Res. 29:365–373.CrossRefGoogle Scholar
  3. Ball, D.A 1992. Weed seed bank response to tillage, herbicides, and crop rotation sequences. Weed Sci. 40:654–659.CrossRefGoogle Scholar
  4. Barralis, G., R. Chadoeuf and J.P. Lonchamp 1988. Longevitè des semences de mauvais herbes annuelles dans un sol cultivè. Weed Res. 28:407–418.CrossRefGoogle Scholar
  5. Bazzaz, F.A. and S.T.A. Pickett 1980. Physiological ecology of tropical succession: a comparative review. Annual Review of Ecology and Systematics 11:287–310.CrossRefGoogle Scholar
  6. Boccanelli, S.I. and J.P. Lewis 1994. The seed bank of an old Pampean prairie and its relation with the standing vegetation. Pesquisa Agropecuaria Brasileira 29:1833–1840.Google Scholar
  7. Botto, J.F., R.A. Sánchez and J.J. Casal 1998. Burial conditions affect light responses of Daturaferox seeds. Seed Sci. Res. 8:423–429.CrossRefGoogle Scholar
  8. Buhler, D.D. and E.S. Oplinger. 1990. Influence of tillage systems on annual weed densities and control in solid-seeded soybean (Glycine max). Weed Sci. 38:158–165.CrossRefGoogle Scholar
  9. Burnside, O.C., R.G. Wilson, S. Weisberg and K.G. Hubbard 1996. Seed longevity of 41 weed species buried 17 years in eastern and western Nebraska. Weed Sci. 44:74–86.CrossRefGoogle Scholar
  10. Cardina, J., E. Regnier and K. Harrison 1991. Long-term tillage effects on seed banks in three Ohio soils. Weed Sci. 39:186–194.CrossRefGoogle Scholar
  11. Dessaint, F., R. Chadoeuf and G. Barralis 1997. Nine years’ soil seed bank and weed vegetation relationships in an arable field without weed control. J. Appl. Ecol. 34:123–130.CrossRefGoogle Scholar
  12. Dorado, J., J.P. Del Monte and C. López-Fando 1999. Weed seed bank response to crop rotation and tillage in semiarid agroecosystems. Weed Sci. 47:61–13.CrossRefGoogle Scholar
  13. Egley, G.H. and J.M. Chandler 1978. Germination and viability of weed seeds after 2.5 years in a 50-year buried seed study. Weed Sci. 26:230–239.CrossRefGoogle Scholar
  14. Feldman, S.R. and J.P. Lewis 1990. Output and dispersal of propagules of Carduus acanthoides, L. Weed Res. 30:161–169.CrossRefGoogle Scholar
  15. Feldman, S.R., J.L. Vesprini and J.P. Lewis 1994. Survival and establishment of Carduus acanthoides, L. Weed Res. 34:265–273.CrossRefGoogle Scholar
  16. Feldman, S.R., C. Alzugaray, P.S. Torres and J.P. Lewis 1997. The effect of different tillage systems on the composition of the seed bank. Weed Res. 37:71–76.CrossRefGoogle Scholar
  17. Fenner, M. 1995. Ecology of seed banks. In: J. Kigel and A. Galili (eds.), Seed Development and Germination. Marcel Dekker, New York, USA, pp. 507–528.Google Scholar
  18. Forcella, F., R.G. Wilson, K.A. Renner, J. Dekker, R.G. Harvey, D.A. Alm, D.D. Buhler and J.A. Cardina 1992. Weed seedbanks of the U.S. Corn Belt: magnitude variation, emergence and application. Weed Sci. 40:633–644.CrossRefGoogle Scholar
  19. Garcia, M.A 1995. Relationships between weed community and soil seed bank in a tropical agroecosystem. Agric. Ecosyst. Environ. 55:139–146.CrossRefGoogle Scholar
  20. Gill, K.S. and M.A. Arshad 1995. Weed flora in the early growth period of spring crops under conventional, reduced, and zero tillage systems on a clay soil in northern Alberta, Canada. Soil Tillage Res. 33:65–79.CrossRefGoogle Scholar
  21. Greig-Smith, P. 1983. Quantitative Plant Ecology. 3rd ed. University of California Press, Berkeley, USA.Google Scholar
  22. Gunsolus, J.L 1990. Mechanical and cultural weed control in corn and soybean. American Journal of Alternative Agriculture 5:114–119.CrossRefGoogle Scholar
  23. Hollander, M. and D. Wolfe. 1973. Nonparametric Statistical Methods. John Wiley and Sons, New York, USA.Google Scholar
  24. James, C. 2003. Global Review of Commercialised Transgenic Crops:2003. ISAAA Briefs No 30: ISAAA: Ithaca, NY.Google Scholar
  25. Jones, N.E. and K.A. Maulden. 1999. Soil seed bank diversity under integrated and conventional farming systems. Proceedings of the Brighton Crop Protection Conference-Weeds, Brighton, UK, pp. 261–266.Google Scholar
  26. Jongman, R.H.G., C.J.F. Ter Braak and O.F.R. Van Tongeren. 1995. Data Analysis in Community and Landscape Ecology. Cambridge University Press. Cambridge, U.K.CrossRefGoogle Scholar
  27. Kremer, R.J 1993. Management of weed seeds banks with microorganisms. Ecol. Appl. 3:42–52.CrossRefGoogle Scholar
  28. Lietti, M., G. Montero, D. Faccini and L. Nisensohn 2000. Evaluación del consumo de semillas de malezas por Notiobia (Anisotarsus) cupripennis (germ.) (Carabidae: Harpalini). Pesquisa Agropecuaria Brasileira. 35:331–340.CrossRefGoogle Scholar
  29. Manly, B.F.J. 1994. Multivariate Statistical Methods: A Primer. Chapman & Hall, London, UK.Google Scholar
  30. Manly, B.F.J. 1997. Randomization, Bootstrap and Monte Carlo Methods in Biology. 2nd ed. Chapman & Hall, London, UK.Google Scholar
  31. Mayor, J.P. and F. Dessaint 1998. Influence of weed management strategies on soil seed bank diversity. Weed Res. 38:95–105.CrossRefGoogle Scholar
  32. McCune, B. and M.J. Mefford. 1999. PC-ORD. Multivariate Analysis of Ecological Data. Version 4. MjM Software Design, Gleneden Beach, Oregon, USA.Google Scholar
  33. Mester, T.C. and D.D. Buhler. 1991. Effects of soil temperature, seed depth, and cyanazine on giant foxtail (Setaria faberi) and velvetleaf (Abutilon theophrasti). Weed Sci. 39:204–209.CrossRefGoogle Scholar
  34. Mohler, C.L. and M.B. Callaway 1992. Effect of tillage and mulch on the emergence and survival of weeds in sweet corn. J. Appl. Ecol. 29:21–34.CrossRefGoogle Scholar
  35. Nisensohn, L., D. Faccini, G. Montero and M. Lietti 1999. Predación de semillas de Amaranthus quitensis H.B.K. en un cultivo de soja: influencia del sistema de siembra. Pesquisa Agropecnaria Brasileira 34:377–384.CrossRefGoogle Scholar
  36. Pillar, V. de Patta and L. Orlóci 1996. On randomization testing in vegetation science: multifactor comparisons of relevé groups. J. Veg. Sci. 7:585–592.CrossRefGoogle Scholar
  37. Podani, J. 2001. SYN-TAX 2000 Computer Programs for Data Analysis in Ecology and Systematics. User’s manual. Scientia, Budapest.Google Scholar
  38. Recasens, J., J.U. Barrera and F. Dessaint. 1997. La expresión del banco de semillas de mal as hierbas en cereales de invierno. Proceedings Congreso de la Sociedad Espańola de Malherbología, Valencia, Spain.Google Scholar
  39. Roberts, H.A. and P.M. Feast 1972. Fate of seeds of some annual weeds in different depths of cultivated and undisturbed soil. Weed Res. 12:316–324.CrossRefGoogle Scholar
  40. Roberts, H.A. and P.M. Feast 1973. Changes in the numbers of viable weed seeds in soil under different regimes. Weed Res. 13:298–303.CrossRefGoogle Scholar
  41. Siegel, S. 1980. Estadistica no paramétrica aplicada a las ciencias de la conducta. Trillas, México.Google Scholar
  42. Soil Survey Staff. 1960. Soil classification, a comprehensive system: 7th approximation. US. Department of Agriculture, Washington.Google Scholar
  43. Soriano, A., B.A. Eilberg and A. Suero 1971. Effects of burial and changes in the soil on seeds of Datura ferox L. Weed Res. 11:196–199.CrossRefGoogle Scholar
  44. Tuesca, D., E. Puricelli and J.C. Papa 2001. A long-term study of weed flora shifts in different tillage systems. Weed Res. 41:369–382.CrossRefGoogle Scholar
  45. Unger, P.W., S.D. Miller and O.R. Jones 1999. Weed seeds in long-term dryland tillage and cropping systems plots. Weed Res. 19:213–223.CrossRefGoogle Scholar
  46. Vengris, J., S. Dunn and M. Stacewicz-Sapuncakis. 1972. Life history studies as related to weed control in the northeast. 7-Common purslane. Agricultural Experimental Station, College of Food and Natural Resources. The University of Massachusetts, Amherst, USA. Research Bulletin 598:1–45.Google Scholar
  47. Wilson, B.J. and G.W. Cussans 1975. A study of the population dynamics of Avenafatua L. as influenced by straw burning, seed shedding and cultivations. Weed Res. 15:249–458.CrossRefGoogle Scholar
  48. Wilson, R.G. 1988. Biology of weed seeds in the soil. In: M.A. Altieri and M. Liebman (eds.) Weeds Management in Agroecosystems: Ecological Approaches. CRC Press, Boca Raton, FL, pp. 25–39.Google Scholar
  49. Wrucke, M.A. and W.E. Arnold 1985. Weed species distribution as influenced by tillage and herbicides. Weed Sci. 33:853–856.CrossRefGoogle Scholar
  50. Zhang, J., A.S. Hamill, I.O. Gardiner and S.E. Weaver 1998. Dependence of weed flora on the active soil seed bank. Weed Res. 38:143–152.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2004

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • D. Tuesca
    • 1
    Email author
  • L. Nisensohn
    • 2
  • S. Boccanelli
    • 3
  • P. Torres
    • 4
  • J. P. Lewis
    • 5
  1. 1.Cátedra de Malezas, Facultad de Ciencias Agrarias, Consejo de InvestigacionesUniversidad Nacional de RosarioZavalla, Santa FeArgentina
  2. 2.Cátedra de Malezas, Facultad de Ciencias AgrariasUniversidad Nacional de RosarioArgentina
  3. 3.Cátedra de Ecología, Facultad de Ciencias AgrariasUniversidad Nacional de RosarioArgentina
  4. 4.Cátedra de Ecología, Facultad de Ciencias Agr arias, Consejo de InvestigacionesUniversidad Nacional de RosarioArgentina
  5. 5.Cátedra de Ecología, Facultad de Ciencias AgrariasUniversidad Nacional de Rosario, Consejo Nacional de Investigaciones Cientificas y TécnicasArgentina

Personalised recommendations