Advertisement

Community Ecology

, Volume 5, Issue 2, pp 235–246 | Cite as

Fine-scale pattern of the boundary zones in alkaline grassland communities

  • M. ZalatnaiEmail author
  • L. Körmöczi
Article

Abstract

We investigated the pattern of boundary types in alkaline grassland communities in Hungary. We used moving split window boundary analysis with dissimilarity functions, usually applied to detect ecotones and landscape boundaries at a coarse scale. The results were compared with those of correspondence analysis and clustering methods for the same data set, as well as with the local frequency distributions of populations along the studied transects.

The MSW technique, usually applied in boundary and transition zone detection, was effective at a fine scale as well. The visible boundaries and transition zones were detectable with this method in most cases, but only sharp and narrow boundaries were verified with ordination and classification. If the changes are gradual in microtopography, then it is possible to detect transition zones between the vegetation patches. These types of transition zones can be considered as ecoclines. Despite the gentle microtopographical gradient, a marked border was detected between the Artemisio-Festucetum pseudovinae and the Achilleo-Festucetum pseudovinae communities. However, neither MSW did indicate boundary zone nor multivariate methods could distinguish sharply between these two communities. The small patches of the Artemisio-Festucetum pseudovinae association appear transitional between the adjacent communities in species composition along both transects. These patches cannot be considered as representing a distinct community type, and thus should be considered as ecotones.

Keywords

Dissimilarity Ecocline Ecotone Gradient Moving split window 

Abbreviations

CA

Correspondence Analysis

MSW

Moving Split Window.

Nomenclature

Simon (1992) for species Borhidi and Sánta (1999) for coenotaxa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acosta, A., C. Blasi and A. Stanisci 2000. Spatial connectivity and boundary patterns in coastal dune vegetation in the Circeo National Park, Central Italy. J. Veg. Sci. 11:149–154.CrossRefGoogle Scholar
  2. Bagi, I 1987. The vegetation map of the Kisapaj UNESCO biosphere reserve core area, Kiskunság National Park, Hungary. Acta Biol. Szeged 33:63–74.Google Scholar
  3. Bagi, I 1988. The vegetation map of the Szívós-szék UNESCO biosphere reserve core area, Kiskunság National Park, Hungary. Acta Biol. Szeged 34:83–95.Google Scholar
  4. Bagi, I 1990. The vegetation map of the Szappan-szék UNESCO biosphere reserve core area, Kiskunság National Park, Hungary. Acta Biol. Szeged 36:27–42.Google Scholar
  5. Bartha, S. 2000. In vivo társuláselmélet (In vivo community theory). In: K. Virágh and A. Kun (eds.), Vegetáció és dinamizmus. MTA Ökológiai és Botanikai Kutatóintézete, Vácrótót, pp. 101–140. (In Hungarian.)Google Scholar
  6. Bíró, M. 1992. Löszpusztagyep-foltok zonációviszonyainak és szikes degradációjának vizsgálata (Investigation of zonation and degradation of loess grassland patches). MSc thesis, Szeged. (In Hungarian.)Google Scholar
  7. Bodrogközy, Gy. 1965a. Ecology of the halophilic vegetation of the Pannonicum II. Correlation between alkali (“szik”) plant communities and genetic soil classification in the northern Hortobágy. Acta Bot. Hung. 11:1–51.Google Scholar
  8. Bodrogközy, Gy. 1965b. Ecology of the halophilic vegetation of the Pannonicum III. Results of the investigation of the solonetz of Orosháza. Acta Biol. Szeged 11:3–25.Google Scholar
  9. Bodrogközy, Gy. 1970. Ecology of the halophilic vegetation of the Pannonicum VI. Effect of the soil-ecological factors on the vegetation of the reserve of lake “Dongér” at Pusztaszer. Acta Biol. Szeged 16(1–2):21 -41.Google Scholar
  10. Bodrogközy, Gy. 1989. A kiskunsági védett területek gyeptakatrójának környezetvédelmi gondjai. 1. Apajpuszta. Biotechnológia és környezetvédelem ma és holnap. 3:29–34Google Scholar
  11. Borhidi, A. and A. Sánta (eds.), 1999. Vörös könyv Magyarország növénytársulásairól I. (Red book of the plant communities of Hungary I.) TermészetBÚVÁR Alapítvány Kiadó, Budapest. In Hungarian.Google Scholar
  12. Brunt, J.W. and W. Conley 1990. Behaviour of a multivariate algorithm for ecological edge detection. Ecol. Model. 49:179–203.CrossRefGoogle Scholar
  13. Carter, V., P.T. Gammont, and M.K. Garrett 1994. Ecotone dynamics and boundary determination in the Great Dismal Swamp. Ecol. Applic. 4:189–203.CrossRefGoogle Scholar
  14. Clements, F.E. 1928. Plant Succession and Indication. 2nd ed. Washington.Google Scholar
  15. Cornelius, J.M. and J.F. Reynolds 1991. On determining the statistical significance of discontinuities within ordered ecological data. Ecology 72:2057–2070.CrossRefGoogle Scholar
  16. Fernández-Palacios, J.M. and J.P. de Nicolás. 1995. Altitudinal pattern of vegetation variation on Tenerife. J. Veg. Sci. 6:183–190CrossRefGoogle Scholar
  17. Fortin, M-J 1994. Edge detection algorithms for two-dimensional ecological data. Ecology 75:956–965.CrossRefGoogle Scholar
  18. Fortin, M-J. and P. Drapeau 1995. Delineation of ecological boundaries: comparison of approaches and significance tests. Oikos 72:323–332.CrossRefGoogle Scholar
  19. Harper, K.A. and S.E. Macdonald. 2001. Structure and composition of riparian boreal forest: new methods for analyzing edge influence. Ecology 82:649–659.CrossRefGoogle Scholar
  20. Horváth, A. 1997. A Kiskunsági Nemzeti Park Miklapusztai területének botanikai állapotfelmérése és vegetációtérképezése. (Vegetation mapping and botanical state assesment of Miklapuszta Kiskunság National Park, Hungary.) Technical report, Szeged. In Hungarian.Google Scholar
  21. Jeník, J. 1992. Ecotone and ecocline: two questionable concepts in ecology. Ekológia (CSFR) 11:243–250.Google Scholar
  22. Johnston, C.A., J. Pastor and G. Pinay. 1992. Quantitative methods for studying landscape boundaries. In: A.J. Hansen and F. di Castri (eds.), Landscape Boundaries: Consequences for Biotic Diversity and Ecological Flow. Springer, New York, pp. 107–125.CrossRefGoogle Scholar
  23. Kelemen, J. (ed.). 1997. Irányelvek a füves területek természetvédelmi szempontú kezeléséhez. (Guidelines for the conservation management of grasslands.) TermészetBÚVÁR Alapítvány Kiadó, Budapest. (In Hungarian.)Google Scholar
  24. Kent, M., W.J. Gill, R.E. Weaver and R.P. Armitage 1997. Landscape and plant community boundaries in biogeography. Progress in Physical Geography 21:315–353CrossRefGoogle Scholar
  25. Körmöczi, L. and A. Balogh. 1990. The analysis of pattern change in a Hungarian sandy grassland. In: F. Krahulec, A.D.Q. Agnew, S. Agnew and H.J. Willems (eds), Spatial Processes in Plant Communities. Academia, Prague, pp. 49–58.Google Scholar
  26. Körmöczi, L. (in prep.) On the sensitivity and significance test of biotic boundary detection. To be submitted to Community Ecology.Google Scholar
  27. Legendre, L. and P. Legendre. 1998. Numerical Ecology. 2nd editiom. Elsevier, Amsterdam.Google Scholar
  28. Ludwig, J.A. and J.M. Cornelius 1987. Locating discontinuities along ecological gradients. Ecology 68:448–450.CrossRefGoogle Scholar
  29. Magura, T 2002. Carabids and forest edge: spatial pattern and edge effect. Forest Ecol. and Manage. 157:23–37.CrossRefGoogle Scholar
  30. Magura, T., B. Táthmérész and T. Molnár 2001. Forest edge and diversity: carabids along forest-grassland transect. Biodiversity and Conservation 10:287–300.CrossRefGoogle Scholar
  31. Magura, T., B. Tóthmérész and Zs. Bordán 2002. Carabids in an oak-hornbeam forest: testing the edge effect hypothesis. Acta Biol. Debrecina 24:55–72.Google Scholar
  32. McCoy, E.D., S.S. Bell and K. Walters 1986. Identifying biotic boundaries along environmental gradients. Ecology 67:749–759.CrossRefGoogle Scholar
  33. Muńoz-Reinoso, J.C. and F. Garcia Novo. 2000. Vegetation patterns on stabilized sands of Dońana Biological Reserve. Proceedings of 43th IAVS Symposium, Nagano, Japan, pp. 162–165.Google Scholar
  34. Nwadialo, B. E. and F. D. Hole 1988. A statistical procedure for partitioning soil transects. Soil Sci. 145:58–62.CrossRefGoogle Scholar
  35. Odum, E. P. 1971. Fundamentals of Ecology. Saunders, Philadelphia.Google Scholar
  36. Oksanen, J. and T. Tonteri 1995. Rate of compositional turnover along gradients and total gradient length. J. Veg. Sci. 6:815–824.CrossRefGoogle Scholar
  37. Orlóci, L. and M.Orlóci. 1991. Edge detection in vegetation: Jornada revisited. In: E. Feoli and L. Orlóci (eds.), Computer Assisted Vegetation Analysis. Kluwer Academic Press, Dodrecht, Netherlands, pp. 373–385.CrossRefGoogle Scholar
  38. Pécsi, M. (ed.). 1967. A dunai Alföld. (The Danube Plain.) Akadémiai Kiadó, Budapest.Google Scholar
  39. Pillar, V. DePatta and F.L.P. de Quadros. 1997. Grassland-forest boundaries in southern Brazil. Coenoses 12:119–126Google Scholar
  40. Podani, J. 1993. SYN-TAX 5.0: Computer programs for multivariate data analysis in ecology and systematics. Abstracta Botanica 17:289–302.Google Scholar
  41. Sharp, M.J. and P.A. Keddy. 1986. A quantitative technique for estimating the boundaries of wetlands from vegetation data. Environ. Manag. 10:107–112.CrossRefGoogle Scholar
  42. Simon, T. 1992. A magyarországi edényes flora határozója. (The flora of Hungary.) Tankönyvkiadó, Budapest. (In Hungarian.)Google Scholar
  43. Stanisci, A., D. Laveri, A. Acosta and A. Blasi. 2000. Structure and diversity trends at Fagus timberline in central Italy. Community Ecology 1:133–138.CrossRefGoogle Scholar
  44. Tóth, T., F. Csillag, L.L. Biehl and E. Micheli. 1991. Characterization of semivegetated salt-affected soils by means of field remote sensing. Remote Sensing of Environment 37:167–180.CrossRefGoogle Scholar
  45. Tóth, T. and K. Rajkai. 1994. Soil and plant correlations in a solonetzic grassland. Soil Sci. 157:254–262.CrossRefGoogle Scholar
  46. van der Maarel, E 1976. On the establishment of plant community boundaries. Ber. Deutsch. Bot. Ges. Bd. 89:415–443.Google Scholar
  47. van der Maarel, E 1990. Ecotones and ecoclines are different. J. Veg. Sci. 1:135–138.CrossRefGoogle Scholar
  48. van der Maarel and E. J. Leertouwer 1967. Variation in vegetation and species diversity along a local environmental gradient. Acta. Bot. neerl. 16:211–221.CrossRefGoogle Scholar
  49. Varga Zoltánné 1984. A Hortobágyi Nemzeti Park sziki gyepeinek fitocönológiai viszonyai és szukcessziós kapcsolatai. (Phytocenology and successional relationships of alkali grasslands in Hortobágy National Park.) Botanikai Kózlemények 71:63–77.Google Scholar
  50. Webster, R 1973. Automatic soil-boundary location from transect data. J. Internatl. Ass. Math. Geol. 5:27–37.CrossRefGoogle Scholar
  51. Webster, R 1978. Optimally partitioning soil transects. J. Soil Sci. 29:388–402.CrossRefGoogle Scholar
  52. Zalatnai, M., I. Jusztin and L. Körmöczi. 2001. Patterns and pattern changes in boundary zones of sand grassland communities. 44th IAVS Symposium, Freising-Weihenstephan, Abstracts, p.38.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2004

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of EcologyUniversity of SzegedSzegedHungary

Personalised recommendations