Combining remotely sensed spectral data and digital surface models for fine-scale modelling of mire ecosystems

Abstract

The detection and evaluation of changes in vegetation patterns is a prerequisite for monitoring programs. The Swiss mire monitoring program aims to assess the changes in mire vegetation in order to examine the efficiency of the management measures. A promising way to explore and detect vegetation structure and vegetation change is the application of predictive vegetation mapping that combines image classification and predictive habitat distribution models. These models deal with predictor variables derived from remotely sensed spectral data and from environmental variables such as a digital surface model (DSM). Low accuracy of environmental data to predict vegetation at the local scale is due to the difficulties to capture dominant fine-scale enironmental gradients. Using high resolution spectral and topographical data sets of 50 cm pixel size and below, the study presented here aims to improve the simulation of local-scale vegetation properties.

The spectral data for fine-scale modelling are based on CIR orthoimages with a ground resolution of 32 cm. Various spectral variables and spectral-textural variables were derived for the modelling process. A new method to reduce the number of predictor variables, the composite modelling is presented in this paper. In comparison to existing methods, composite modelling has the advantage of being independent of the scale of the predictor variables, and at the same time being transferable among various data sets. Mean indicator values for moisture, nutrients and light derived from vegetation data are used as response variables. Results show that the topographical variables based on relief features are less powerful predictors than the spectral variables but that combining them enhances the overall predictive power. Stratification of the data according to the tree layer and the shadow areas increases the accuracy of the model.

Abbreviations

DSM:

Digital Surface Model

DTM:

Digital Terrain Model

DEM:

Digital Elevation Model

CIR:

Colour Infrared

NDVI:

Normalized Difference Vegetation Index

EVI:

Enhanced Vegetation Index

MSAVI2:

Modified Soil Adjusted Vegetation Index 2

References

  1. Baatz, M. and A. Schäpe 2000. Multiresolution Segmentation - an optimization approach for high quality multi-scale image segmentation. In: J. Strobl, T. Blaschke and G. Griesebner (eds), Angewandte Geographische Informationsverarbeitung XII, Wichmann Verlag, Heidelberg. pp. 12–23.

    Google Scholar 

  2. Bajwa, S. G. and L. Tian. 2002. Multispectral CIR image calibration for cloud shadow and soil background influence using intensity normalization. Applied Engineering in Agriculture 18: 627–635.

    Article  Google Scholar 

  3. Bettinger, P., G. A. Bradshaw and G. W. Weaver. 1996. Effects of geographic information system vector-raster-vector data conversion on landscape indices. Canadian Journal of Forest Research 26: 1416–1425.

    Article  Google Scholar 

  4. Brandtberg, T., J. B. McGraw, T. A. Warner and R. E. Landenberger. 2003. Image restoration based on multiscale relationship of image structures. IEEE Transactions on Geoscience and Remote Sensing 41: 102–110.

    Article  Google Scholar 

  5. Broge, N. H. and E. Leblanc. 2001. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment 76: 156–172.

    Article  Google Scholar 

  6. Broggi, M. F. 1990. Inventar der Flachmoore von nationaler Bedeutung. Entwurf für die Vernehmlassung. / Inventaire des bas-marais d’importance nationale. Projet mis en consultation. / Inventario delle paludi d’importanza nazionale. Progetto presentato in consultazione. BUWAL, Bern, Switzerland.

  7. Brossard, T., A. Elvebakk, D. Joly and L. Nilsen. 2002. Modelling index of thermophily by means of a multi-source database on Broggerhalvoya Peninsula (Svalbard). International Journal of Remote Sensing 23: 4683–4698.

    Article  Google Scholar 

  8. Dean, C., T. A. Warner and J. B. McGraw. 2000. Suitability of the DCS460c colour digital camera for quantitative remote sensing analysis of vegetation. ISPRS Journal of Photogrammetry and Remote Sensing 55: 105–118.

    Article  Google Scholar 

  9. Diekmann, M. and C. Dupre. 1997. Acidification and eutrophication of deciduous forests in northwestern Germany demonstrated by indicator species analysis. Journal of Vegetation Science 8: 855–864.

    Article  Google Scholar 

  10. Dillon, W. R. and M. Goldstein. 1984. Multivariate Analysis, Methods and Applications, Wiley, New York.

    Google Scholar 

  11. Dirnböck, T., S. Dullinger, M.Gottfried, C. Ginzler and G. Grabherr. 2003. Mapping alpine vegetation based on image analysis, topographic variables and Canonical Correspondance Analysis. Applied Vegetation Science 6: 85–96.

    Google Scholar 

  12. Dirnböck, T., R. J. Hobbs, R. J. Lambeck and P. A. Caccetta. 2002. Vegetation distribution in relation to topographically driven processes in southwestern Australia. Applied Vegetation Science 5: 147–158.

    Article  Google Scholar 

  13. Draper, N. R. and H. Smith. 1981. Applied Regression Analysis, Wiley, New-York.

    Google Scholar 

  14. Dufrêne, M. and P. Legendre. 1997. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.

    Google Scholar 

  15. Dullinger, S., T. Dirnböck, M. Gottfried, C. Ginzler and G. Grabherr. 2001. Kombination von statistischer Habitatanalyse und Luftbildauswertung zur Kartierung alpiner Rasengesellschaften. Angewandte Geographische Informationsverarbeitung XIII: Beiträge zum AGIT-Symposium Salzburg 2001: 114–123.

    Google Scholar 

  16. Ellenberg, H. 1974. Zeigerwerte der Gefässpflanzen Mitteleuropas. Scripta Geobotanica 9.

  17. Ellenberg, H., H. E. Webwe, R. Düll, V. Wirth, W. Werner and D. Paulissen. 1992. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobot. 18: 1–248.

    Google Scholar 

  18. ESRI 1995. ARC/INFO. Environmental Systems Research Institute, Inc. 1982–1995. Version 7.0.3.

  19. Frank, T. D. 1988. Mapping dominant vegetation communities in the Colorado Rocky- Mountain Front Range with Landsat Thematic Mapper and Digital Terrain Data. Photogrammetric Engineering and Remote Sensing 54: 1727–1734.

    Google Scholar 

  20. Franklin, J. 1995. Predictive vegetation mapping: Geographic modelling of biospatial patterns in relation to environmental gradients. Progress in Physical Geography 19: 474–499.

    Article  Google Scholar 

  21. Gao, X., A. R. Huete, W. G. Ni and T. Miura. 2000. Optical-biophysical relationships of vegetation spectra without background contamination. Remote Sensing of Environment 74: 609–620.

    Article  Google Scholar 

  22. Gégout, J. C., J. C. Herve, F. Houllier and J. C. Pierrat. 2003. Prediction of forest soil nutrient status using vegetation. Journal of Vegetation Science 14: 55–62.

    Article  Google Scholar 

  23. Ginzler, G. and K. De Laporte 2001. High resolution digital surface models for environmental monitoring. Geoinformatics. 1: 26–28.

    Google Scholar 

  24. Goodchild, M.F., S. Guoqing and Y.Shiren. 1992. Development and test of an error model for categorical data. International Journal of Geographical Information Systems 6: 87–104.

    Article  Google Scholar 

  25. Grünig, A., L. Vetterli and O. Wildi. 1986. Die Hoch- und Uebergangsmoore der Schweiz - eine Inventarauswertung. / Les hauts-marais et marais de transition de Suisse - résultats d’un inventaire. Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft. Birmensdorf, Bericht 281.

  26. Guisan, A. and N. E. Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135: 147–186.

    Article  Google Scholar 

  27. Hawkes, J. C., D. G. Pyatt and I. M. S. White. 1997. Using Ellenberg indicator values to assess soil quality in British forests from ground vegetation: A pilot study. Journal of Applied Ecology 34: 375–387.

    Article  CAS  Google Scholar 

  28. Hill, M. O. and P. D. Carey. 1997. Prediction of yield in the Rothamsted Park Grass Experiment by Ellenberg indicator values. Journal of Vegetation Science 8: 579–586.

    Article  Google Scholar 

  29. Holopainen, M. and G. X. Wang. 1998. The calibration of digitized aerial photographs for forest stratification. International Journal of Remote Sensing 19: 677–696.

    Article  Google Scholar 

  30. Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Gao and L. G. Ferreira. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83: 195–213.

    Article  Google Scholar 

  31. Hutchinson, C. F. 1982. Techniques for combining Landsat and ancillary data for digital classification improvement. Photogrammetric Engineering and Remote Sensing 48: 123–130.

    Google Scholar 

  32. Johnson, R. A. and D. W. Wichern. 1982. Applied Multivariate Statistical Analysis, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  33. Kienast, F., B. Brzeziecki and O. Wildi. 1996. Long-term adaptation potential of Central European mountain forests to climate change: A GIS-assisted sensitivity assessment. Forest Ecology and Management 80: 133–153.

    Article  Google Scholar 

  34. Landolt, E. 1977. Ökologische Zeigerwerte zur Schweizer Flora. Veröffentlichungen des Geobotanischen Institutes der Eidg. Techn. Hochschule, Stiftung Rübel. Zürich.

  35. Legendre, P. and M. Legendre. 1998. Numerical Ecology, Elsevier Science, Amsterdam.

    Google Scholar 

  36. Lim, K., P. Treitz, M. Wulder, B. St-Onge and M. Flood. 2003. Li-DAR remote sensing of forest structure. Progress in Physical Geography 27: 88–106.

    Article  Google Scholar 

  37. Mardia, K. V., J. T. Kent and J. M. Bibby. 1979. Multivariate Analysis, Academic Press, London.

    Google Scholar 

  38. Mikkola, J. and P. Pellikka. 2002. Normalization of bi-directional effects in aerial CIR photographs to improve classification accuracy of boreal and subarctic vegetation for pollen-landscape calibration. International Journal of Remote Sensing 23: 4719–4742.

    Article  Google Scholar 

  39. Miller, A. J. 1984. Selection of subsets of regression variables. Journal of the Royal Statistical Society Series A - Statistics in Society 147: 389–425.

    Article  Google Scholar 

  40. Miller, A. J. 1990. Subset Selection in Regression, Chapman and Hall, London.

    Book  Google Scholar 

  41. Moore, I. D., R. B. Grayson and A. R. Ladson. 1991. Digital terrain modeling - a review of hydrological, geomorphological, and biological applications. Hydrological Processes 5: 3–30.

    Article  Google Scholar 

  42. Nilsen, L., T. Brossard and D. Joly. 1999. Mapping plant communities in a local Arctic landscape applyinga scanned infrared aerial photograph in a geographical information system. International Journal of Remote Sensing 20: 463–480.

    Article  Google Scholar 

  43. Osborne, M. R. 1976. On the computation of stepwise regressions. Australian Computer Journal 6: 61–68.

    Google Scholar 

  44. Persson, S. 1981. Ecological indicator values as an aid in the interpretation of ordination diagrams. J. Ecol. 69: 71–84.

    Article  Google Scholar 

  45. Qi, J., A. Chehbouni, A. R. Huete, Y. H. Kerr and S. Sorooshian. 1994. A modified soil adjusted vegetation index. Remote Sensing of Environment 48: 119–126.

    Article  Google Scholar 

  46. Ravan, S. A. and P. S. Roy. 1997. Satellite remote sensing for ecological analysis of forested landscape. Plant Ecology 131: 129–141.

    Article  Google Scholar 

  47. Richards, J. A. 1993. Remote Sensing Digital Image Analysis, An Introduction. Springer, Berlin.

    Book  Google Scholar 

  48. Richardson, A. J. and C. L. Wiegand. 1977. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing 43: 1541–1552.

    Google Scholar 

  49. Schlittgen, R. 2000. Einführung in die Statistik: Analyse und Modellierung von Daten, Oldenbourg Verlag, München.

    Google Scholar 

  50. Stahel, W. 1995. Statistische Datenanalysis, Eine Einführung für Naturwissenschafter. Vieweg, Braunschweig.

    Google Scholar 

  51. Ter Braak, C. J. F. and C. W. N. Looman. 1995. Regression. In: R. H. Jongman, C. J. F. Ter Braak and O. F. R. Van Tongeren (eds), Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge

    Google Scholar 

  52. Treitz, P. and P. Howarth. 2000. Integrating spectral, spatial, and terrain variables for forest ecosystem classification. Photogrammetric Engineering and Remote Sensing 66: 305–317.

    Google Scholar 

  53. Treitz, P. M., P. J. Howarth, R. C. Suffling and P. Smith. 1992. Application of detailed ground information to vegetation mapping with high spatial-resolution digital imagery. Remote Sensing of Environment 42: 65–82.

    Article  Google Scholar 

  54. Walker, D. J. and N. C. Kenkel. 2001. Landscape complexity in space and time. Community Ecology 2: 109–119.

    Article  Google Scholar 

  55. Warner, T. A., D. J. Campagna, C. S. Evans, D. W. Levandowski and H. Cetin. 1991. Analyzing remote-sensing geobotanical trends in Quetico Provincial Park, Ontario, Canada, using digital elevation data. Photogrammetric Engineering and Remote Sensing 57: 1179–1183.

    Google Scholar 

  56. Warner, T. A., D. W. Levandowski, R. Bell and H. Cetin. 1994. Rule-based geobotanical classification of topographic, aeromagnetic, and remotely-sensed vegetation community data. Remote Sensing of Environment 50: 41–51.

    Article  Google Scholar 

  57. White, J. D., G. C. Kroh and J. E. Pinder. 1995. Forest mapping at Lassen Volcanic National Park, California, using Landsat Tm data and a geographical information system. Photogrammetric Engineering and Remote Sensing 61: 299–305.

    Google Scholar 

  58. Wiegand, C. L., A. J. Richardson, D. E. Escobar and A. H. Gerbermann. 1991. Vegetation indexes in crop assessments. Remote Sensing of Environment 35: 105–119.

    Article  Google Scholar 

  59. Wiegand, K., H. Schmidt, F. Jeltsch and D. Ward. 2000. Linking a spatially-explicit model of acacias to GIS and remotely-sensed data. Folia Geobotanica 35: 211–230.

    Article  Google Scholar 

  60. Woodcock, C. and V. J. Harward. 1992. Nested-hierarchical scene models and image segmentation. International Journal of Remote Sensing 13: 3167–3187.

    Article  Google Scholar 

  61. Zar, J. H. 1986. Biostatistical Analysis, Prentice Hall, Upper Saddle River, New Jersey.

    Google Scholar 

  62. Zimmermann, N. E. and F. Kienast 1999: Predictive mapping of alpine grasslands in Switzerland: Species versus community approach. Journal of Vegetation Science 10: 469–482.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Küchler.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Küchler, M., Ecker, K., Feldmeyer-Christe, E. et al. Combining remotely sensed spectral data and digital surface models for fine-scale modelling of mire ecosystems. COMMUNITY ECOLOGY 5, 55–68 (2004). https://doi.org/10.1556/ComEc.5.2004.1.6

Download citation

Keywords

  • Composite modelling
  • Digital Elevation Model
  • GIS
  • Model calibration
  • Model evaluation
  • Orthoimages
  • Remote sensing
  • Swiss Mire Monitoring
  • Vegetation models