Community Ecology

, Volume 4, Issue 1, pp 29–33 | Cite as

The effect of measurement scales on estimating vegetation cover: a computer-assisted experiment

  • I. HahnEmail author
  • I. Scheuring


We performed a computer assisted experiment to test the accuracy of different ratio scales in estimating vegetation cover. Sixteen subjects estimated the cover level of artificial vegetation patterns displayed on the screen for various levels of resolution (from presence/absence to 100 different states, each measured on the ratio scale). We found that estimation error is minimum when the range of cover is divided into ten equal parts. Finer resolution gives less precise estimation since subjects tend to divide cover level into ten or at most twenty intervals in their mind.


Artificial vegetation pattern Estimation bias Estimation error Ratio scale Visual assessment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aberdeen, J. E. C. 1958. The effect of quadrat size, plant size and plant distribution on frequency estimates in plant ecology. Aust. J. Bot. 6:47–58CrossRefGoogle Scholar
  2. Avena, G., C. Blasi, E. Feoli and A. Scoppola. 1981. Measurement of the predictive value of species lists for species cover in phytosociological samples. Vegetatio 45: 77–84.CrossRefGoogle Scholar
  3. Bannister, P. 1966. The use of subjective estimates of cover-abundance as the basis for ordination. J. Ecol. 54: 665–674.CrossRefGoogle Scholar
  4. Becking, R. W. 1957. The Zurich-Montpellier school of phytosociology. Bot. Rev. 23:411–488.CrossRefGoogle Scholar
  5. Braun-Blanquet, J. 1964. Pflanzensoziologie, Grundzüge der Vegetationskunde. 3. Aufl. Springer, Wien, New York.Google Scholar
  6. Dietz, H. and T. Steinlein. 1996. Determination of plant species cover by means of image analysis. J. Veg. Sci. 7: 131–136.CrossRefGoogle Scholar
  7. Gotfryd, A., R. and I. C. Hansell. 1985. The impact of observer bias on multivariate analyses of vegetation structure. Oikos 45:223–234.CrossRefGoogle Scholar
  8. Haslett, J. R. 1994. Community structure and the fractal dimensions of mountain habitats. J. Theoret. Biol. 167:407–411CrossRefGoogle Scholar
  9. Hatton, T. J., N. E. West and P. S. Johnson. 1986. Relationships of the error associated with ocular estimation and percent cover. J. Range Manag. 39:91–92.CrossRefGoogle Scholar
  10. Jensen, S. 1978. Influences of transformation of cover values on classification and ordination of lake vegetation. Vegetatio 37: 19–31.Google Scholar
  11. Kennedy, K. A. and P. A. Addison. 1987. Some consideration for the use of visual estimates of plant cover in biomonitoring. J. Ecol. 75: 151–157.CrossRefGoogle Scholar
  12. Klimeš, L., M. Denčák, M. Hájek, I. Jongepierova and T. Kučera. 2001. Scale-dependent biases in the species counts in grassland. J. Veg. Sci. 12: 699–704.CrossRefGoogle Scholar
  13. Lepš, J. and V. Hadincová. 1992. How reliable are our vegetation analyses? J. Veg. Sci. 3: 119–124.CrossRefGoogle Scholar
  14. Londo, G. 1976. The decimal scale for relevés of permanent quadrats. Vegetatio 33: 61–64.CrossRefGoogle Scholar
  15. Maarel, E. van der 1979. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39: 97–114.CrossRefGoogle Scholar
  16. Milne, B. T. 1992. Spatial aggregation and neutral models in fractal landscapes. Am. Nat. 139: 32–57.CrossRefGoogle Scholar
  17. Noy-Meir, I. 1973. Data transformation in ecological ordination. I. Some advantages of non-centering. J. Ecol. 61: 329–341.CrossRefGoogle Scholar
  18. Noy-Meir, I., D. Walker and W. T. Williams. 1975. Data transformation in ecological ordination. II. On the meaning of data standardization. J. Ecol. 63: 779–800.CrossRefGoogle Scholar
  19. Peet, R. K., T. R. Wentworth and P. S. White. 1998. A flexible, multipurpose method for recording vegetation composition and structure. Castanea 63: 262–274.Google Scholar
  20. Sugihara, G. and R. M. May. 1990. Applications of fractals in ecology. Trends. Ecol. Evol. 5: 79–86.CrossRefGoogle Scholar
  21. Smith, A. D. 1944. A study of the reliability of range vegetation estimates. Ecology 25: 441–448.CrossRefGoogle Scholar
  22. Sykes, J. M., A. D. Horrill and M. D. Mountford. 1983. Use of visual cover assessments as quantitative estimators of some British woodland taxa. J. Ecol. 71: 437–450.CrossRefGoogle Scholar
  23. Zar, J. H. 1999. Biostatistical Analysis. 4th ed. Prentice Hall, Upper Saddle River, New Jersey. 663 pp.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2003

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Plant Taxonomy and EcologyEötvös Loránd UniversityBudapestHungary
  2. 2.Research Group of Ecology and Theoretical BiologyHungarian Academy of SciencesBudapestHungary

Personalised recommendations