Community Ecology

, Volume 3, Issue 2, pp 169–180 | Cite as

Fitting abundance distribution models in tropical arboreal communities of SE Brazil

  • R. Cielo Filho
  • F. R. Martins
  • M. A. Gneri
Open Access


The species abundance distribution of ecological communities has been represented through several mathematical models, of which the most common are: geometric series, logseries, lognormal, and a type of broken stick, this latter found only in animal communities. There is no consensus on the underlying biological processes, but initial observations on plant communities related these models to equilibrium and high richness (lognormal), stress or disturbance and low richness (logseries and geometric series). Recently the value of these relationships was challenged, and other descriptors were considered better predictors of richness, disturbance and stress. We aimed at investigating how these models and their parameters, as well as dominance and evenness are related with species richness, stress and disturbance in six tropical forest communities, SE Brazil: two well-conserved fragments, two disturbed by fire, and two swampy forests (anoxic stress). The models did not show consistent relationships with richness, disturbance or stress. The parameters and indices of diversity α (logseries) and λ (lognormal) varied closely with richness, and the dominance was larger in the communities submitted to stress or disturbance. Our results indicate the need of further studies in order to validate (or refute) the use of abundance distribution models for detection of patterns related to richness, stress or disturbance in tropical arboreal communities. On the other hand, richness and dominance did respond to disturbance and stress.


Cohens’s table Community structure Disturbance Diversity Simpsons’s index variance Stress Tropical forests 



We thank to the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq for the grants for the first author; to John Du Vall Hay, Miguel Petrere Junior and Kikyo Yamamoto for the critical reading of the manuscript; to Steven M. Holland for providing a software for the calculation of the variance of S(m) (available from


  1. Basset, Y., V. Novotny, S.E. Miller and N.D. Springate. 1998. Assessing the impact of forest disturbance on tropical invertebrates: some comments. J. Appl. Ecol. 35: 461–466.CrossRefGoogle Scholar
  2. Bulla, L. 1994. An index of evenness and its associated diversity measure. Oikos 70: 167–171.CrossRefGoogle Scholar
  3. Catharino, E.L.M. 1989. Estudos fisionômico, florístico e fitosso-ciológico em matas residuais secundárias do município de Piracicaba, SP. M.Sc. Thesis. Campinas State University, Campinas, Brazil.Google Scholar
  4. Cielo Filho, R. 2001. Estrutura de abundância de um trecho da Floresta Estacional Semidecídua no município de Campinas, estado de São Paulo: Mata Ribeirão Cachoeira. M.Sc. Thesis. Campinas State University, Campinas, Brazil.Google Scholar
  5. Cohen, A.C. Jr. 1959. Simplified estimators for the normal distribution when samples are singly censored or truncated. Technometrics 1:217–237.CrossRefGoogle Scholar
  6. Cohen, A.C. Jr. 1961. Tables of maximum likelihood estimates: singly truncated and singly censored samples. Technometrics 3: 535–541.CrossRefGoogle Scholar
  7. Cohen, J.E. 1968. Alternative derivations of a species abundance relation. Am. Nat. 102: 165–172.CrossRefGoogle Scholar
  8. Conover, W.J. 1999. Practical Nonparametric Statistics. 3rd ed. John Wiley, New York.Google Scholar
  9. Cotgreave, P. and P. Harvey. 1994. Evenness of abundance in bird communities. J. Anim. Ecol. 63: 365–374.CrossRefGoogle Scholar
  10. Fisher, R.A., A.S. Corbert and C.B. Williams. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol. 12: 42–58.CrossRefGoogle Scholar
  11. Gray, J.S. 1987. Species-abundance patterns. In: J.H.R. Gee and P.S. Giller (eds.), Organization of Communities: Past and Present. Blackwell Science, Oxford, pp. 53–67.Google Scholar
  12. Greig-Smith, P. 1983. Quantitative Plant Ecology. 3rd ed. Blackwell, Oxford.Google Scholar
  13. Grime, J.P. 1983. Plant Strategies and Vegetation Processes. Wiley, New York.Google Scholar
  14. Heck, K.L.J, G. Van Belle and D. Simberloff. 1975. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56: 1459–1461.CrossRefGoogle Scholar
  15. Hill, J.K. and K.C. Hamer. 1998. Using species abundance models as indicators of habitat disturbance in tropical forests. J. Appl. Ecol. 35: 458–460.CrossRefGoogle Scholar
  16. Hill, M.O. 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.CrossRefGoogle Scholar
  17. Hubbell, S.P. and R.B. Foster. 1983. Diversity of canopy trees in a neotropical forest and implications for conservation. In: S.L. Sutton, T.C. Whitmore and A.C. Chadwick (eds.), Tropical Rain Forest: Ecology and Management. Blackwell Scientific Publications, Oxford, pp. 25–41.Google Scholar
  18. Hughes, R.G. 1986. Theories and models of species abundance. Am. Nat. 128: 879–899.CrossRefGoogle Scholar
  19. Huribert, S.H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52: 577–586.CrossRefGoogle Scholar
  20. Joly, C.A. 1986. Heterogeneidade ambiental e diversidade de estratégias adaptativas de espécies arbôreas de mata de galeria. Anais do Xsimpósio da Academia de Ciências do Estado de São Paulo 1: 19–38.Google Scholar
  21. Joly, C.A. 1991. Flooding tolerance in tropical trees. In: M.B. Jacksons, D.D. Daves and H. Lambers (eds.), Plant Life under Oxygen Deprivation. SPB Academic Publishing. The Hague, pp. 23–34.Google Scholar
  22. Joly, C.A. and R.M.M. Crawford. 1982. Variation in tolerance and metabolic responses to flooding in some tropical trees. J. Exp. Bot. 33: 799–809.CrossRefGoogle Scholar
  23. Leigh, E.G. Jr. 1999. Tropical Forest Ecology: A View from Barro Colorado Island. Oxford University Press, New York.Google Scholar
  24. MacArthur, R.H. 1957. On the relative abundance of bird species. Proceedings of the National Academy of Science 43: 293–295.CrossRefGoogle Scholar
  25. MacArthur, R.H. 1960. On the relative abundance of species. Am. Nat. 94: 25–36.CrossRefGoogle Scholar
  26. Magurran, A.E. 1988. Ecological Diversity and its Measurement. Princeton University Press, Princeton.CrossRefGoogle Scholar
  27. Martins, F.R. and F.A.M. Santos. 1999. Técnicas usuais de estimativa da biodiversidade. Rev istaHolos, edição especial: 236–267.Google Scholar
  28. May, R.M. 1975. Patterns of species abundance and diversity. In: M.L. Cody and J.M. Diamond (eds.), Ecology and Evolution of Communities. Belknap Press of the Harvard University, Cambridge, pp. 81–120.Google Scholar
  29. Metzger, J.P., R. Goldenberg and L.C. Bernacci. 1998. Diversidade e estrutura de fragmentos de mata de várzea e de matamesófila semidecidua submontana do Rio Jacaré-Pepira (SP). Revista Brasileira deBotânica 21: 321–330.Google Scholar
  30. Motomura, L. 1932. A statistical treatment of associations. Jap. J. Zool. 44: 379–383.Google Scholar
  31. Nummelin, M. 1998. Log-normal distribution of species abundances is not a universal indicator of rain forest disturbance. J. Appl Ecol. 35: 454–457.CrossRefGoogle Scholar
  32. Pielou, E.C. 1975. Ecological Diversity. Wiley, New York.Google Scholar
  33. Preston, F. W. 1948. The commonness and rarity of species. Ecology 29: 254–283.CrossRefGoogle Scholar
  34. Scudeller, V.V. and F.R. Martins. 2002. FITOGEO – Um sistema de banco de dados aplicado à fitogeografia. Acta Amazonica (in press).Google Scholar
  35. Simpson, E.H. 1949. Measurement of diversity. Nature 163: 688.CrossRefGoogle Scholar
  36. Sokal, R.R. and F.J. Rohlf. 1995. Biometry: the Principles and Practice of Statistics in Biological Research. 3rd ed. W.H. Freeman and Company, New York.Google Scholar
  37. Sugihara, G. 1980. Minimal community structure: an explanation of species abundance patterns. Am. Nat. 116: 770–787.CrossRefGoogle Scholar
  38. Tabanez, A.J.A., V.M. Viana and A.D.S. Dias. 1997. Conseqüências da fragmentaçăo e do efeito de borda sobre a estrutura, diversidade e sustentabilidade de um fragmento de floresta de planalto de Piracicaba, SP Revista Brasileira de Biologia 57: 47–60.Google Scholar
  39. Toniato, M.T.Z., H.F. Leităo Filho and R.R. Rodrigues. 1998. Fitos-sociologia de um remanescente de floresta higrófila (mata de brejo) em Campinas, SP Revista Brasileira de Botânica 21: 197–210.Google Scholar
  40. Torres, R.B., L.A.F. Matthes and R.R. Rodrigues. 1994. Floristica e estrutura do componente arbóreo de mata de brejo em Campinas, SP Revista Brasileira de Botânica 17: 189–194.Google Scholar
  41. Ugland, K.I. and J.S. Gray. 1982. Lognormal distributions and the concept of community equilibrium. Oikos 39: 171–178.CrossRefGoogle Scholar
  42. Watkins, A.J. and J.B. Wilson. 1994. Plant community structure, and its relation to the vertical complexity of communities: dominance/diversity and spatial rank consistency. Oikos 70: 91–98.CrossRefGoogle Scholar
  43. Whittaker, R.H. 1965. Dominance and diversity in land plant communities. Science 147: 250–260.CrossRefGoogle Scholar
  44. Whittaker, R.H. 1972. Evolution and measurement of species diversity. Taxon 21: 213–251.CrossRefGoogle Scholar
  45. Wilson, J.B. 1991. Methods of fitting dominance/diversity curves. J. Veg Sci. 2: 35–46.CrossRefGoogle Scholar
  46. Wilson, J.B. and H. Gitay. 1995. Community structure and assembly rules in a dune slack: variance in richness, guild proportionality, biomass constancy and dominance/diversity relations. Vegetatio 116:93–106.CrossRefGoogle Scholar
  47. Wilson, J.B., H. Gitay, J.B. Steel and W.McG. King. 1998. Relative abundance distributions in plant communities: effects of species richness and of spatial scale. J. Veg. Sci. 9: 213–220.CrossRefGoogle Scholar
  48. Wilson, J.B., T.C.E. Wells, I.C. Trueman, G. Jones, M.D. Atkinson, M.J. Crawley, M.E. Dodd and J. Silvertown. 1996. Are there assembly rules for plant species abundance? An investigation in relation to soil resources and successional trends. J. Ecol. 84: 527–538.CrossRefGoogle Scholar
  49. Zar, J.H. 1999. Biostatistical Analysis. 4th ed. Prentice Hall, New Jersey.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2002

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • R. Cielo Filho
    • 1
  • F. R. Martins
    • 1
  • M. A. Gneri
    • 2
  1. 1.Department of BotanyInstitute of Biology, Campinas State UniversityCampinasBrasil
  2. 2.Department of StatisticsInstitute of Mathematics, Statistics and Computer Science, Campinas State UniversityCampinasBrasil

Personalised recommendations