Microhabitat associations of land snails in forested dolinas: implications for coarse filter conservation
Abstract
We determined microhabitat associations for 39 land snail species based on multimodel inference and generalized linear mixed models using a comprehensive and micro-scale data set from the Aggtelek Karst Area, Hungary. Patterns of microhabitat associations were highly nested among microhabitat types (litter, live trees, dead wood, rock) with high number of specialist species in dead wood and in rock microhabitats. Species composition was highly predictable in these microhabitats as opposed to live tree and litter faunas. Species richness was affected by microhabitat, topographic factors and local moisture conditions. Species richness in dead wood and rock microhabitats remained high irrespective of the topographic effects as opposed to litter and live tree microhabitats, where richness decreased with drier microhabitat conditions due to topography. Our results imply that consideration of topographic factors and microhabitat quality as part of coarse filter conservation measures could be beneficial to local land snail populations in the face of changing climate and disturbance regimes.
Keywords
Abundance Dispersion Gastropoda Habitat features Indicator species Mollusca Niche width Species composition Species richnessPreview
Unable to display preview. Download preview PDF.
Supplementary material
References
- Aussenac, G. 2000. Interactions between forest stands and microclimate: ecophysiological aspects and consequences for silviculture. Ann. For. Sci. 57: 287–301.CrossRefGoogle Scholar
- Bank, R. A. 2007. Mollusca: Gastropoda. Fauna Europea version 2.5 (23 July 2012). https://doi.org/www.faunaeur.org
- Bates, D., M. Maechler and B. Bolker. 2012. lme4: Linear mixed-effects models using S4 classes. R package version 0.999999-0. https://doi.org/CRAN.R-project.org/package=lme4
- Baur, B. and A. Baur. 1993. Climatic warming due to thermal radiation from an urban area as possible cause for the local extinction of a land snail. J. Appl. Ecol. 30: 333–340.CrossRefGoogle Scholar
- Burnham, K. P. and D. R. Anderson. 2002. Model selection and Multimodel Inference. A Practical Information – Theoretic Approach. Springer, New York.Google Scholar
- Cameron, R. A. D. 2013. The diversity of land molluscs—questions unanswered and questions unasked. Am. Malacol. Bull. 31:169–180.CrossRefGoogle Scholar
- Cameron, R. A. D. and B. M. Pokryszko. 2005. Estimating the species richness and composition of land mollusc communities: problems, consequences and practical advice. J. Conchol. 38: 529–548.Google Scholar
- Černohorská, N. H., M. Horsák and R. A. D. Cameron. 2010. Land snail species richness and abundance at small scales: the effects of distinguishing between live individuals and empty shells. J. Conchol. 40: 233–241.Google Scholar
- Chambers, J. M., W. S. Cleveland, B. Kleiner and P. A. Tukey. 1983. Graphical Methods for Data Analysis. (Wadsworth & Brooks/ Cole Statistics/Probability Series). Duxbury Press, Scarborough, ONGoogle Scholar
- Clark, J. A. and R. M. May. 2002. Taxonomic bias in conservation research. Science 297: 191–192.CrossRefGoogle Scholar
- Dobrowski S. Z. 2011. A climatic basis for microrefugia: the influence of terrain on climate. Glob. Change Biol. 17: 1022–1035.CrossRefGoogle Scholar
- Domokos, T. 1995. A Gastropodák létállapotáról, a létállapotok osztályozása a fenomenológia szintjén [On the existence of gastropods and the classification of existence on the level of phenomenology]. Malakológiai Tájékoztató 14: 79–82.Google Scholar
- Gärdenfors, U., H. W. Waldén and I. Wäreborn. 1995. Effect of soil acidification on forest land snails. Ecological Bulletins 44: 259–270.Google Scholar
- Haufler, J. B., C. A. Mehl and G. J. Roloff. 1996. Using a coarse-filter approach with species assessment for ecosystem management. Wildl. Soc. Bull. 24: 200–208.Google Scholar
- Juřičková, L., M. Horsák, R. Cameron, K. Hylandere, A. Míkovcová, J. C. Hlaváč and J. Rohovecf. 2008. Land snail distribution patterns within a site: the role of different calcium sources. Eur. J. Soil Biol. 44: 172–179.CrossRefGoogle Scholar
- Kappes, H., W. Topp, P. Zach and J. Kulfan. 2006. Coarse woody debris, soil properties, and snails (Mollusca: Gastropoda) in European primeval forests of different environmental conditions. Eur. J. Soil Biol. 42: 139–146.CrossRefGoogle Scholar
- Kerney, M. P., R. A. D. Cameron and J. H. Jungbluth. 1983. Die Landschnecken Nord- und Mitteleuropas. Paul Parey, Hamburg, Berlin.Google Scholar
- Kovács, S., G. Less, O. Piros and L. Roth. 1988. Triassic formations of the Aggtelek-Rudabánya Mountains. Magyar Állami Földtani Intézet Évi Jelentése 1986: 19–43.Google Scholar
- Nekola, J. C. 1999. Terrestrial gastropod richness of carbonate cliff and associated habitats in the great lakes region of North America. Malacologia 41: 231–252.Google Scholar
- Nordsieck, H. 2007. Balea Gray 1824 and Alinda H. and A. Adams 1855 are separated as genera (Gastropoda: Stylommatophora: Clausiliidae). Mitteilungen der deutschen malakozoologischen Gesellschaft 77/78: 27–30.Google Scholar
- Noss, R. F. 1990. Indicators for monitoring biodiversity: a hierarchical approach. Conserv. Biol. 4: 355–364.CrossRefGoogle Scholar
- Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Sólymos, M. H. H. Stevens and H. Wagner 2012. vegan: Community Ecology Package. R package version 2.0–5. https://doi.org/CRAN.R-project.org/package=vegan
- Parmesan C. 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37: 637–669.CrossRefGoogle Scholar
- Podani, J. 2000. Introduction to the Exploration of Multivariate Biological Data. Backhuys Publishers, Leiden.Google Scholar
- R Core Team 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051- 07-0, URL https://doi.org/www.R-project.org.Google Scholar
- Schilthuizen, M., M. I. F. Teräväinen, N. Faezamoltha, K. Tawith, H. Ibrahim, S. M. Chea, C. P. Chuan, L. J. Daim, A. Jubaidi, M. J. Madjapuni, M. Sabeki and A. Mokhtar. 2002. Microsnails at microscales in Borneo: distributions of Prosobranchia versus Pulmonata. J. Molluscan Stud. 68: 259–262.CrossRefGoogle Scholar
- Sólymos, P. and A. Nagy. 1997. The recent mollusc fauna of the Szársomlyó (S Hungary): spatial pattern and microclimate. Malakológiai Tájékoztató 16: 35–42.Google Scholar
- Sólymos P. and B. Páll-Gergely. 2007. Unusually rich land snail fauna in coniferous forest, Slătioara (Suceava, Romania). Tentacle 15: 6–7.Google Scholar
- Sólymos, P., I. Czentye and B. Tutkovics. 2007. A comparison of soil sampling and direct search in malacological field inventories. In: Tajovský, K., Schaghamerský, J. and Pižl, V. (eds.), Contributions to Soil Zoology in Central Europe II., Institute of Soil Biology, Ceské Budéjovice, pp. 161–163.Google Scholar
- Sólymos, P., Z. Kemencei, B. Páll-Gergely, R. Farkas, F. Vilisics and E. Hornung. 2009a. Does shell accumulation matter in micro scale land snail surveys? Malacologia 51: 389–393.CrossRefGoogle Scholar
- Sólymos, P., R. Farkas, Z. Kemencei, B. Páll-Gergely, F. Vilisics, A. Nagy, M. Kisfali and E. Hornung. 2009b. Micro-habitat scale survey of land snails in dolinas of the Alsó-hegy, Aggtelek National Park, Hungary. Mollusca 27: 167–171.Google Scholar
- Sólymos, P., F. Vilisics, Z. Kemencei, B. Páll-Gergely, R. Farkas, A. Nagy, M. Kisfali and E. Hornung. 2009c. Globális változás, lokális túlélés: kitettség és nedvességi grádiens hatása avarlakó gerinctelenekre. [Global change, local survival: the effects of exposition and humudity gradients on litter dwelling invertebrates.]. Természetvédelmi Közlemények 15: 396–411.Google Scholar
- Sólymos, P. 2009d. Processing ecological data in R with the mefa package. J. Stat. Softw. 29: 1–28. URL: https://doi.org/www.jstatsoft.org/v29/i08/CrossRefGoogle Scholar
- Sümegi, P. and E. Hertelendi. 1998. Reconstruction of microenvironmental changes in Kopasz Hill loess area at Tokaj (Hungary) between 15.000–70.000 BP years. Radiocarbon 40: 855–863.CrossRefGoogle Scholar
- Tanács E. and K. Barta. 2006. Talajvizsgálatok a Haragistya-Lófej erdőrezervátum területén [Soil surveys in the Haragistya-Lófej forest reserve]. Karsztfejlődés 11: 235–251.Google Scholar
- Vilisics, F., A. Nagy, P. Sólymos, R. Farkas, Z. Kemencei, B. Páll-Gergely, M. Kisfali and E. Hornung. 2008. Data on the terrestrial Isopoda fauna of the Alsó-hegy, Aggtelek National Park, Hungary. Folia Faunistica Slovaca 13: 9–12.Google Scholar
- Vilisics, F., Z. Kemencei, B. Páll-Gergely, R. Farkas, A. Nagy, M. Kisfali and E. Hornung. 2009. Globális változás, lokális túlélés: kitettség és nedvességi grádiens hatása avarlakó gerinctelenekre [Global change, local survival: effects of aspect and moisture on epigeic invertebrate communities]. Természetvédelmi Közlemények 15: 396–411.Google Scholar
- Vilisics, F., P. Sólymos, A. Nagy, R. Farkas, Z. Kemencei and E. Hornung. 2011. Small scale gradient effects on isopods (Crustacea, Oniscidea) in karstic sink holes. Biologia (Bratisl.) 66: 499–505.CrossRefGoogle Scholar
Copyright information
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.