Advertisement

Community Ecology

, Volume 15, Issue 2, pp 256–268 | Cite as

Woodland bird response to landscape connectivity in an agriculture-dominated landscape: a functional community approach

  • A. Gil-TenaEmail author
  • J. Nabucet
  • C. Mony
  • J. Abadie
  • S. Saura
  • A. Butet
  • F. Burel
  • A. Ernoult
Article

Abstract

Over the last 30 years, ecological networks have been deployed to reduce global biodiversity loss by enhancing landscape connectivity. Bird species dwelling in woodland habitats that are embedded in agriculture-dominated landscapes are expected to be particularly sensitive to the loss of connectivity. This study aimed to determine the role of landscape connectivity in woodland bird species richness, abundance, and community similarity in north-east Brittany (north-west France). An exhaustive woodland selection protocol was carried out to minimize the effects of woodland size on the response variables. Connectivity of the woodland and forest network in the study area was evaluated using graph-theory, accounting for matrix permeability, and a characteristic median natal dispersal distance at the community level based on the bird species pool recorded in the sampled woodlands. Information-theoretic model selection, controlling for woodland size in all the cases, depicted the response of woodland birds at the community level to the connectivity of agriculture-dominated landscapes. On average, the sampled woodlands (n = 25) contained 15.5 ± 2.4 bird species, with an abundance of 25.1 ± 3.9, and had highly similar bird communities (species composition and proportion); eight species represented 57% of total abundance and were present in at least 22 woodlands. The performance of models improved when using effective, rather than Euclidean, interpatch distances in the connectivity assessment. Landscape connectivity was only significantly related to similarity of proportional species composition. Large woodlands contained communities with more similar species proportions in an inhospitable agricultural landscape matrix than in a more permeable one. Woodland size was the most relevant factor determining species abundance, indicating that the bird population sizes are primarily proportional to the local habitat availability. Connectivity in relation to landscape matrix permeability did not seem to induce the flow of woodland-dependent bird species that are dominant in the community but rather of matrix-dwelling bird species that are less dependent on woodland patch area. In conclusion, both habitat conservation and restoration (i.e., amount and quality), in combination with permeable landscape structures (such as heterogeneous land cover mosaics), are advocated for community level conservation strategies.

Keywords

Alpha diversity Brittany Community similarity CONEFOR Ecological networks GRAPHAB Landscape matrix permeability Spatial scale 

Abbreviations

AIC

Akaike Information Criterion

OLS

Ordinary Least Squares

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adriaensen F., J.P. Chardon, G. De Blust, E. Swinnen, S. Villalba, H. Gulinck and E. Matthysen. 2003. The application of ‘least-cost’ modelling as a functional landscape model. Landscape Urban Plan. 64: 233–247.CrossRefGoogle Scholar
  2. Baker, L. 2007. Effect of corridors on the movement behavior of the jumping spider Phidippus princeps (Araneae, Salticidae). Can. J. Zool. 85: 802–808.CrossRefGoogle Scholar
  3. Batáry, P., A. Kovács-Hostyánszki, C. Fischer, T. Tscharntke and A. Holzschuh. 2012. Contrasting effect of isolation of hedges from forests on farmland vs. woodland birds. Community Ecol. 13: 155–161.CrossRefGoogle Scholar
  4. Baum, K.A., K.J. Haynes, F.P. Dillemuth and J.T. Cronin. 2004. The matrix enhances the effectiveness of corridors and stepping stones. Ecology 85: 2671–2676.CrossRefGoogle Scholar
  5. Bennett, A., K.R. Crooks and M. Sanjayan. 2006. The future of connectivity conservation. In: K.R. Crooks and M. Sanjayan (eds.), Connectivity Conservation. Cambridge Univ. Press, New York. pp. 676–694.CrossRefGoogle Scholar
  6. Benton, T.G., J.A. Vickery and J.D. Wilson. 2003. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18: 182–188.CrossRefGoogle Scholar
  7. Bibby, C.J., N.D. Burgess and D.A. Hill. 1992. Bird Census Techniques. Cambridge Univ. Press, Cambridge.Google Scholar
  8. Bunn, A.G., D.L. Urban and T.H. Keitt. 2000. Landscape connectivity: A conservation application of graph theory. J. Environ. Manage. 59: 265–278.CrossRefGoogle Scholar
  9. Burnham, K.P. and D.R. Anderson. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretical Approach. Springer-Verlag, New York.Google Scholar
  10. Carranza, M.L., E. D’Alessandro, S. Saura and A. Loy. 2012. Connectivity providers for semi-aquatic vertebrates: the case of the endangered otter in Italy. Landscape Ecol. 27: 281–290.CrossRefGoogle Scholar
  11. Cleland, E.E. 2012. Biodiversity and ecosystem stability. Nat. Educ. Knowl. 3: 14.Google Scholar
  12. Cook, W.M., K.T. Lane, B.L. Foster and R.D. Holt. 2002. Island theory, matrix effects and species richness patterns in habitat fragments. Ecol. Lett. 5: 619–623.CrossRefGoogle Scholar
  13. Crooks, K.R. and M. Sanjayan (eds.). 2006. Connectivity Conservation. Cambridge Univ. Press, New York.Google Scholar
  14. Damschen, E.I., N.M. Haddad, J.L. Orrock, J.J. Tewksbury and D.J. Levey. 2006. Corridors increase plant species richness at large scales. Science 313 (5791): 1284–1286.CrossRefPubMedGoogle Scholar
  15. Davies, Z.G. and A.S. Pullin. 2007. Are hedgerows effective corridors between fragments of woodland habitat? An evidence-based approach. Landscape Ecol. 22: 333–351.Google Scholar
  16. Decout, S., S. Manel, C. Miaud and S. Luque. 2012. Integrative approach for landscape-based graph connectivity analysis: a case study with the common frog (Rana temporaria) in human-dominated landscapes. Landscape Ecol. 27: 267–279.CrossRefGoogle Scholar
  17. Donald, P.F., R.E. Green and M.F. Heath, M.F. 2001. Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc. Roy. Soc. B-Biol. Sci. 268 (1462): 25–29.CrossRefGoogle Scholar
  18. Ewers, R.M. and R.K. Didham. 2006. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81: 117–142.CrossRefGoogle Scholar
  19. Fall, A., M.J. Fortin, M. Manseau and D. O’Brien. 2007. Spatial graphs: Principles and applications for habitat connectivity. Ecosystems 10: 448–461.CrossRefGoogle Scholar
  20. Filippi-Codaccioni, O., V. Devictor, Y. Bas, J. Clobert and R. Julliard. 2010. Specialist response to proportion of arable land and pesticide input in agricultural landscapes. Biol. Conserv. 143: 883–890.CrossRefGoogle Scholar
  21. Fischer, C., A. Flohre, L.W. Clement, P. Batáry, W.W. Weisser, T. Tscharntke and C. Thies. 2011. Mixed effects of landscape structure and farming practice on bird diversity. Agric. Ecosyst. Environ. 141: 119–125.CrossRefGoogle Scholar
  22. Fischer, J. and D.B. Lindenmayer. 2006. Beyond fragmentation: the continuum model for fauna research and conservation in human-modified landscapes. Oikos 112: 473–480.CrossRefGoogle Scholar
  23. Foltête, J.C., C. Clauzel and G. Vuidel. 2012. A software tool dedicated to the modelling of landscape networks. Environ. Modell. Softw. 38: 316–327.CrossRefGoogle Scholar
  24. Fuller, R.J., D.E. Chamberlain, N.H.K. Burton and S.J. Gough. 2001. Distributions of birds in lowland agricultural landscapes of England and Wales: How distinctive are bird communities of hedgerows and woodland? Agric. Ecosyst. Environ. 84: 79–92.CrossRefGoogle Scholar
  25. Fuller, R.J., S.A. Hinsley and R.D. Swetnam. 2004. The relevance of non-farmland habitats, uncropped areas and habitat diversity to the conservation of farmland birds. Ibis 146 (Suppl. 2): 22–31.CrossRefGoogle Scholar
  26. Gaston, K.J., R.G. Davies, C.D.L. Orme, V.A. Olson, G.H. Thomas, T.S. Ding, P.C. Rasmussen, J.J. Lennon, P.M. Bennett, I.P.F. Owens and T.M. Blackburn. 2007. Spatial turnover in the global avifauna. Proc. R. Soc. Biol. Sci. 274 (1618): 1567–1574.CrossRefGoogle Scholar
  27. Gil-Tena, A., R. Lecerf and A. Ernoult. 2013. Disentangling community assemblages to depict an indicator of biological connectivity: A regional study of fragmented semi-natural grasslands. Ecol. Indic. 24: 48–55.CrossRefGoogle Scholar
  28. Gilbert-Norton, L., R. Wilson, J. R. Stevens and K.H. Beard. 2010. A meta-analytic review of corridor effectiveness. Conserv. Biol. 24: 660–668.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gregory, R.D., A. van Strien, P. Vorisek, A.W.G. Meyling, D.G. Noble, R.P.B. Foppen and D.W. Gibbons. 2005. Developing indicators for European birds. Philos. T.R. Soc. B. 360 (1454): 269–288.CrossRefGoogle Scholar
  30. Gurrutxaga, M., L. Rubio and S. Saura. 2011. Key connectors in protected forest area networks and the impact of highways: A transnational case study from the Cantabrian Range to the Western Alps (SW Europe). Landscape Urban Plan. 101: 310–320.CrossRefGoogle Scholar
  31. Haas, C.A. 1995. Dispersal and use of corridors by birds in wooded patches on an agricultural landscape. Conserv. Biol. 9: 845–854.CrossRefGoogle Scholar
  32. Hinsley, S.A., R.A. Hill, R.J. Fuller, P.E. Bellamy and P. Rothery. 2009. Bird species distributions across woodland canopy structure gradients. Community Ecol. 10: 99–110.CrossRefGoogle Scholar
  33. Houet, T., T.R. Loveland, L. Hubert-Moy, C. Gaucherel, D. Napton, C.A. Barnes and K. Sayler. 2010. Exploring subtle land use and land cover changes: a framework for future landscape studies. Landscape Ecol. 25: 249–266.CrossRefGoogle Scholar
  34. Hoyle, M. and F.S. Gilbert. 2004. Species richness of moss landscapes unaffected by short-term fragmentation. Oikos 105: 359–367.CrossRefGoogle Scholar
  35. Jongman, R.H.G., M. Külvik and I. Kristiansen. 2004. European ecological networks and greenways. Landscape Urban Plan. 68: 305–319.CrossRefGoogle Scholar
  36. Kadoya, T. 2009. Assessing functional connectivity using empirical data. Popul. Ecol. 51: 5–15.CrossRefGoogle Scholar
  37. Kindlmann, P. and F. Burel. 2008. Connectivity measures: a review. Landscape Ecol. 23: 879–890.Google Scholar
  38. Laitila, J. and A. Moilanen. 2013. Approximating the dispersal of multi-species ecological entities such as communities, ecosystems or habitat types. Ecol. Model. 259: 24–29.CrossRefGoogle Scholar
  39. Lennon, J.J., P. Koleff, J.J.D. Greenwood and K.J. Gaston. 2001. The geographical structure of British bird distributions: diversity, spatial turnover and scale. J. Anim. Ecol. 70: 966–979.CrossRefGoogle Scholar
  40. Ludwig, M., H. Schlinkert, A. Holzschuh, C. Fischer, C. Scherber, A. Trnka, T. Tscharntke and P. Batáry. 2012. Landscape-moderated bird nest predation in hedges and forest edges. Acta Oecol. 45: 50–56.CrossRefGoogle Scholar
  41. Magurran, A. E. 2009. Measuring Biological Diversity. Blackwell, Oxford.Google Scholar
  42. McRae, B.H. 2006. Isolation by resistance. Evolution 60: 1551–1561.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Moilanen, A. 2011. On the limitations of graph-theoretic connectivity in spatial ecology and conservation. J. Appl. Ecol. 48: 1543–1547.CrossRefGoogle Scholar
  44. Muratet, A., R. Lorrillière, P. Clergeau and C. Fontaine. 2013. Evaluation of landscape connectivity at community level using satellite-derived NDVI. Landscape Ecol. 28: 95–105.CrossRefGoogle Scholar
  45. Ockinger, E. and H.G. Smith. 2008. Do corridors promote dispersal in grassland butterflies and other insects? Landscape Ecol. 23: 27–40.CrossRefGoogle Scholar
  46. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P.R. Minchin, R.B. O’Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens and H. Wagner. 2013. vegan: Community Ecology Package. R package version 2.0–10. https://doi.org/CRAN.R-project.org/package=vegan
  47. Paradis, E., S.R. Baillie, W.J. Sutherland and R.D. Gregory. 1998. Patterns of natal and breeding dispersal in birds. J. Anim. Ecol. 67: 518–536.CrossRefGoogle Scholar
  48. Paradis E., J. Claude and K. Strimmer. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Pascual-Hortal, L. and S. Saura. 2007. Impact of spatial scale on the identification of critical habitat patches for the maintenance of landscape connectivity. Landscape Urban Plan. 83: 176–186.CrossRefGoogle Scholar
  50. Peach, W.J., S.R. Baillie and D.E. Balmer. 1998. Long-term changes in the abundance of passerines in Britain and Ireland as measured by constant effort mist-netting. Bird Study 45: 257–275.CrossRefGoogle Scholar
  51. Peterson, A.P. 2002. Zoonomen Nomenclatural data. URL: https://doi.org/www.zoonomen.net
  52. Price, B., C.A. McAlpine, A.S. Kutt, S.R. Phinn, D.V. Pullar and J.A. Ludwig. 2009. Continuum or discrete patch landscape models for savanna birds? Towards a pluralistic approach. Ecography 32: 745–756.CrossRefGoogle Scholar
  53. Ralph, C.J., G.R. Geupel, P. Pyle, T.E. Martin and D.F. DeSante. 1993. Handbook of Field Methods for Monitoring Landbirds. Gen. Tech. Rep. PSW-GTR-144. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture.Google Scholar
  54. Rayfield, B., M.J. Fortin and A. Fall. 2010. The sensitivity of least-cost habitat graphs to relative cost surface values. Landscape Ecol. 25: 519–532.CrossRefGoogle Scholar
  55. Rösch, V., T. Tscharntke, C. Scherber and P. Batáry. 2013. Landscape composition, connectivity and fragment size drive effects of grassland fragmentation on insect communities. J. Appl. Ecol. 50: 387–394.CrossRefGoogle Scholar
  56. Sala, O.E., F.S. Chapin III, J.J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L.F. Huenneke, R.B. Jackson, A. Kinzig, R. Leemans, D.M. Lodge, H.A. Mooney, M. Oesterheld, N.L. Poff, M.T. Sykes, B.H. Walker, M. Walker and D.H. Wall. 2000. Global biodiversity scenarios for the year 2100. Science 287(5459): 1770–1774.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Sauer, J.R., J.E. Hines and J. Fallon. 2004. The North American Breeding Bird Survey, results and analysis 1966–2003. Version 2004.1. Laurel, MD: USGS Patuxent Wildlife Research Center.Google Scholar
  58. Saura, S. and L. Pascual-Hortal. 2007. A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landscape Urban Plan. 83: 91–103.CrossRefGoogle Scholar
  59. Saura, S. and L. Rubio. 2010. A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 33: 523–537.Google Scholar
  60. Saura, S. and J. Torné. 2009. Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ. Modell. Softw. 24: 135–139.CrossRefGoogle Scholar
  61. Shanahan, D.F., C. Miller, H.P. Possingham and R.A. Fuller. 2011. The influence of patch area and connectivity on avian communities in urban revegetation. Biol. Conserv. 144: 722–729.CrossRefGoogle Scholar
  62. Smith, A., N. Koper, C.M. Francis and L. Fahrig. 2009. Confronting collinearity: comparing methods for disentangling the effects of habitat loss and fragmentation. Landscape Ecol. 24: 1271–1285.CrossRefGoogle Scholar
  63. Sutherland, G.D., A.S. Harestad, K. Price and K.P. Lertzman. 2000. Scaling of natal dispersal distances in terrestrial birds and mammals. Conserv. Ecol. 4 (1), 16, https://doi.org/www.consecol.org/vol4/iss1/art16.CrossRefGoogle Scholar
  64. Taylor, P.D., L. Fahrig, K. Henein and G. Merriam. 1993. Connectivity is a vital element of landscape structure. Oikos 68: 571–573.CrossRefGoogle Scholar
  65. Taylor, P.D., L. Fahrig and K.A. With. 2006. Landscape connectivity: a return to the basics. In: K.R. Crooks and M. Sanjayan (eds.), Connectivity Conservation. Cambridge University Press, New York. pp. 29–43.CrossRefGoogle Scholar
  66. Tellería, J.L. and T. Santos. 1995. Effects of forest fragmentation on a guild of wintering passerines: the role of habitat selection. Biol. Conserv. 71: 61–67.CrossRefGoogle Scholar
  67. Urban, D. and T. Keitt. 2001. Landscape connectivity: a graph-theoretic perspective. Ecology 82: 1205–1218.CrossRefGoogle Scholar
  68. Vannier, C. 2012. Analyse spatiale de structures paysagères en contexte agricole bocage. Cybergeo: European Journal of Geography, Environment, Nature, Landscape: 607. Available at https://doi.org/cybergeo.revues.org/25354?lang=en.
  69. Venables, W.N. and B.D. Ripley. 2002. Modern Applied Statistics with S. Fourth edition. Springer, New York.CrossRefGoogle Scholar
  70. Verboom, J., A. Schotman, P. Opdam and J.A. J. Metz. 1991. European nuthatch metapopulations in a fragmented agricultural landscape. Oikos 61: 149–156.CrossRefGoogle Scholar
  71. Watts, K., A.E. Eycott, P. Handley, D. Ray, J.W. Humphrey and C.P. Quin. 2010. Targeting and evaluating biodiversity conservation action within fragmented landscapes: an approach based on generic focal species and least-cost networks. Landscape Ecol. 25: 1305–1318.CrossRefGoogle Scholar
  72. Wolda, H. 1981. Similarity indices, sample size and diversity. Oecologia 50: 296–302.CrossRefPubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • A. Gil-Tena
    • 1
    • 2
    • 3
    Email author
  • J. Nabucet
    • 4
  • C. Mony
    • 1
  • J. Abadie
    • 1
  • S. Saura
    • 5
  • A. Butet
    • 1
  • F. Burel
    • 1
  • A. Ernoult
    • 1
  1. 1.Observatory of Sciences of the Universe in Rennes, UMR CNRS 6553 ECOBIOUniversity of Rennes 1-UEBRennes cedexFrance
  2. 2.Forest Sciences Centre of CataloniaSolsonaSpain
  3. 3.Centre for Ecological Research and Forestry ApplicationsBellaterra Campus of Universidad Autónoma de BarcelonaCerdanyola del VallèsSpain
  4. 4.Climate and Land Use by Remote SensingUMR COSTELRennesFrance
  5. 5.Department of Natural Systems and ResourcesTechnical University of MadridMadridSpain

Personalised recommendations