Advertisement

Community Ecology

, Volume 15, Issue 2, pp 246–255 | Cite as

Gastropod communities in alpine grasslands are characterized by high beta diversity

  • D. SchmeraEmail author
  • B. Baur
Article

Abstract

Alpine grasslands harbour species-rich communities of plants and invertebrates. We examined how environmental variables and anthropogenic impact shape species richness and community structure of terrestrial gastropods in alpine grasslands in the Val Müstair (Eastern Alps, Switzerland). Gastropods were sampled using a standardised method at 76 sites spanning an elevation range from 1430 m to 2770 m. A total of 4763 specimens representing 52 species were recorded. Correspondence analysis based on presence/absence data revealed that the grassland gastropod community was structured in a complex way with elevation, wetness, grazing intensity and inclination of the sites as key factors, while abundance-based analysis identified the importance of the elevation and wetness of sites. Generalized linear model showed that species richness decreased with increasing elevation and increased with increasing soil pH. The grassland gastropod communities were characterized by a high beta diversity, as indicated by the SDR-simplex analysis. Species-specific traits of gastropods showed sensitivity to the environmental characters of the sites, as shown by a fourth-corner analysis.

Keywords

Community assembly Grassland management Grazing intensity SDR-simplex analysis Species richness Species traits 

Abbreviations

AIC

Akaike’s Information Criterion

CA

Correspondence analysis

GLM

Generalized linear model

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2014_15020246_MOESM1_ESM.pdf (113 kb)
Supplementary material, approximately 115 KB.

References

  1. Ansart, A., A. Guiller, O. Moine, M.-C. Martin and L. Madec. 2014. Is cold hardiness size-constrained? A comparative approach in land snails. Evol. Ecol. 28: 471–493.CrossRefGoogle Scholar
  2. Aubry, S., F. Magnin, V. Bonnet and R.C. Preece. 2005. Multi-scale altitudinal patterns in species richness of land snail communities in south-eastern France. J. Biogeogr. 32: 985–998.CrossRefGoogle Scholar
  3. Baur, B. 1986. Patterns of dispersion, density and dispersal in alpine populations of the land snail Arianta arbustorum (L.) (Helicidae). Holarct. Ecol. 9: 117–125.Google Scholar
  4. Baur, B. and A. Baur. 1993. Climatic warming due to thermal radiation from an urban area as possible cause for the local extinction of a land snail. J. Appl. Ecol. 30: 333–340.CrossRefGoogle Scholar
  5. Baur, B. and A. Baur. 1995. Habitat-related dispersal in the land snail Chondrina clienta. Ecography 18: 123–130.CrossRefGoogle Scholar
  6. Baur, B., T. Meier, A. Baur and D. Schmera. 2014. Terrestrial gastropod diversity in an alpine region: disentangling effects of elevation, area, geometric constraints, habitat type and land-use intensity. Ecography 37: 390–401.CrossRefGoogle Scholar
  7. Baur, B., C. Cremene, G. Groza, A.A. Schileyko, A. Baur and A. Erhardt. 2007. Intensified grazing affects endemic plant and gastropod diversity in alpine grasslands of the Southern Carpathians, Romania. Biologia 62: 438–445.CrossRefGoogle Scholar
  8. Bengtsson, J. and B. Baur. 1993. Do pioneers have r-selected traits? Life-history patterns among colonizing terrestrial gastropods. Oecologia 94: 17–22.CrossRefPubMedGoogle Scholar
  9. Bloch, C.P., C.L. Higgins and M.R. Willig. 2007. Effect of large-scale disturbance on metacommunity structure of terrestrial gastropods: temporal trends in nestedness. Oikos 116: 395–406.CrossRefGoogle Scholar
  10. Boschi, C. and B. Baur. 2007a. The effect of horse, cattle and sheep grazing on the diversity and abundance of land snails in nutrient-poor calcareous grasslands. Basic Appl. Ecol. 8: 55–65.CrossRefGoogle Scholar
  11. Boschi, C. and B. Baur. 2007b. Effects of management intensity on land snails in Swiss nutrient-poor pastures. Agricult. Ecosyst. Environ. 120: 243–249.CrossRefGoogle Scholar
  12. Boschi, C. and B. Baur. 2008. Pasture management affects the land snail diversity in nutrient-poor calcareous grasslands. Basic Appl. Ecol. 9: 752–761.CrossRefGoogle Scholar
  13. Bundi, M., J. Clavadetscher and R. Rodewald. 2009. Flurbewässerung im Münstertal. Verlag Bündner Monatsblatt, Chur.Google Scholar
  14. Cameron, R.A.D., B.M. Pokryszko and M. Horsak. 2010. Land snail faunas in Polish forests: patterns of richness and composition in a post-glacial landscape. Malacologia 53: 77–134.CrossRefGoogle Scholar
  15. Carvalho, J.C., P. Cardoso, P. A.V. Borges, D. Schmera and J. Podani. 2013. Measuring fractions of beta diversity and their relationships to nestedness: a theoretical and empirical comparison of novel approaches. Oikos 122: 825–834.CrossRefGoogle Scholar
  16. Chiba, S. 2007. Species richness patterns along environmental gradients in island land molluscan fauna. Ecology 88: 1738–1746.CrossRefPubMedGoogle Scholar
  17. Crawley, M.J. 2007. The R Book. Wiley, ChichesterCrossRefGoogle Scholar
  18. Dainese, M., M. Scotton, F. Clementel, A. Pecile and J. Leps. 2012. Do climate, resource availability, and grazing pressure filter floristic composition and functioning in Alpine pastures? Community Ecol. 13: 45–54.CrossRefGoogle Scholar
  19. Dray, S. and A.B. Dufour. 2007. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Software 22: 1–20.CrossRefGoogle Scholar
  20. Dray, S. and P. Legendre. 2008. Testing the species trait-environment relationships: the fourth-corner problem revisited. Ecology 89: 3400–3412.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dullinger S., T. Dirnböck, J. Greimler and G. Grabherr. 2003. A resampling approach for evaluating effects of pasture abandonment on subalpine plant species diversity. J. Veg. Sci. 14: 243–252.CrossRefGoogle Scholar
  22. Dvorakova, J. and M. Horsák. 2012. Variation of snail assemblages in hay meadows: disentangling the predictive power of abiotic environment and vegetation. Malacologia 55: 151–162.CrossRefGoogle Scholar
  23. Ellenberg, H. 1996. Vegetation Mitteleuropas mit den Alpen. 5 edn. Eugen Ulmer, Stuttgart.Google Scholar
  24. Falkner, G., P. Obrdlik, E. Castella and M.C.D. Speight. 2001. Shelled Gastropoda of Western Europe. Friedrich-Held-Gesellschaft, Munich.Google Scholar
  25. Giokas, S. and M. Mylonas. 2004. Dispersal patterns and population structure of the land snail Albinaria coerulea (Pulmonata: Clausiliidae). J. Mollus. Stud. 70: 107–116.CrossRefGoogle Scholar
  26. Gotelli, N.J. and A.E. Arnett. 2000. Biogeographic effects of red fire ant invasion. Ecol. Lett. 3: 257–261.CrossRefGoogle Scholar
  27. Hylander, K., C. Nilsson, B.G. Jonsson and T. Göthner. 2005. Differences in habitat quality explain nestedness in land snail meta-community. Oikos 108: 351–361.CrossRefGoogle Scholar
  28. Kerney, M.P., R.A.D. Cameron and J.H. Jungbluth. 1983. Die Landschnecken Nord- und Mitteleuropas. Paul Parey, Hamburg.Google Scholar
  29. Körner, C. 1999. Alpine Plant Life: Functional Ecology of High Mountain Ecosystems. Springer, Berlin.CrossRefGoogle Scholar
  30. Labaune C. and F. Magnin. 2002. Pastoral management vs. land abandonment in Mediterranean uplands: impact on land snail communities. Glob. Ecol. Biogeogr. 11: 237–245.CrossRefGoogle Scholar
  31. Legendre, P., R. Galzin and M.L. Harmelin-Vivien. 1997. Relating behavior to habitat: solutions to the fourth-corner problem. Ecology 78: 547–562.Google Scholar
  32. Liew, T.-S., M. Schilthuizen and M. bin Lakim. 2010. The determinants of land snail diversity along a tropical elevation gradient: insularity, geometry and niches. J. Biogeogr. 37: 1071–1078.CrossRefGoogle Scholar
  33. Marini, L., M. Scotton, S. Klimek, J. Isselstein and A. Pecile. 2007. Effects of local factors on plant species richness and composition of Alpine meadows. Agric. Ecosyst. Environ. 119: 281–288.CrossRefGoogle Scholar
  34. Martin, K. and M. Sommer. 2004a. Effects of soil properties and land management on the structure of grassland snail assemblages in SW Germany. Pedobiologia 48: 193–203.CrossRefGoogle Scholar
  35. Martin, K. and M. Sommer. 2004b. Relationships between land snail assemblage patterns and soil properties in temperate-humid forest ecosystems. J. Biogeogr. 31: 531–545.CrossRefGoogle Scholar
  36. McCune, B. and D. Keon. 2002. Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 13: 603–606.CrossRefGoogle Scholar
  37. Messerli, B. and J. D. Ives. eds. 1997. Mountains of the World. Parthenon Publishing, New York.Google Scholar
  38. MeteoSwiss. 2013. Climate normals Val Müstair, reference period 1961–1990. Federal Office of Meteorogy and Climatology MeteoSwiss. https://doi.org/www.meteoschweiz.ch. (accessed on 14 Ocotober 2013)
  39. Miklós, I. and J. Podani. 2004. Randomization of presence-absence matrices: comments and new algorithms. Ecology 85: 86–92.CrossRefGoogle Scholar
  40. Nagy, L., G. Grabherr, C. Körner and D.B.A. Thompson (eds.). 2003. Alpine Biodiversity in Europe. Springer, Berlin.Google Scholar
  41. Nekola, J.C. 2010. Acidophilic terrestrial gastropod communities of North America. J. Mollus. Stud. 76: 144–156.CrossRefGoogle Scholar
  42. Niedrist, G., E. Tasser, C. Lueth, J. Dalla Via and U. Tappeiner. 2009. Plant diversity declines with recent land use changes in European Alps. Plant Ecol. 202: 195–210.CrossRefGoogle Scholar
  43. Oggier, P., S. Zschokke and B. Baur. 1998. A comparison of three methods for assessing the gastropod community in dry grasslands. Pedobiologia 42: 348–357.Google Scholar
  44. Oksanen, J., G. Blancet, R. Kindt, P. Legendre, P.R. Minchin, R.B. O’Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens and H. Wagner. 2013. vegan: Community Ecology Package. R package version 2.0–6. https://doi.org/CRAN.R-project.org/package=vegan
  45. Podani, J. 2000. Introduction to the Exploration of Multivariate Biological Data. Backhuys Publisher, Leiden, The Netherlands.Google Scholar
  46. Podani, J. and D. Schmera. 2011. A new conceptual and methodological framework for exploring and explaining pattern in presence-absence data. Oikos 119: 908–917.Google Scholar
  47. Poschlod, P. and M. F. Wallis De Vries. 2002. The historical and socioeconomic perspective of calcareous grasslands - Lessons from the distance and recent past. Biol. Cons. 104: 361–373.CrossRefGoogle Scholar
  48. R Core Team. 2012. A language and environment for statistical computing. Vienna, Austria. ISBN 3-900051-07-0, URL https://doi.org/www.R-project.org/
  49. Riedener, E., H.-P. Rusterholz and B. Baur. 2013. Effects of different irrigation systems on the biodiversity of species-rich hay meadows. Agric. Ecosyst. Env. 164: 62–69.CrossRefGoogle Scholar
  50. Ruckli, R., H.-P. Rusterholtz and B. Baur. 2013. Invasion of Impatiens glandulifera affects terrestrial gastropods by altering microclimate. Acta Oecol. 47: 16–23.CrossRefGoogle Scholar
  51. Rüetschi J., P. Stucki, P. Müller, H. Vicentini and F. Claude. 2012. Rote Liste Weichtiere (Schnecken und Muscheln). Gefährdete Arten der Schweiz, Stand 2010. Bundesamt für Umwelt, Bern, und Schweizer Zentrum für die Kartographie der Fauna, Neuenburg. Umwelt-Vollzug 1216: 1–148.Google Scholar
  52. Sanders, N.J., N.J. Gotelli, N.E. Heller and D.M. Gordon. 2003. Community disassembly by an invasive species. Proc. Nat. Acad. Sci. 100: 2474–2477.CrossRefPubMedGoogle Scholar
  53. Schilthuizen, M. 2011. Community ecology of tropical forest snails: 30 years after Solem. Contrib. Zool. 80: 1–15.CrossRefGoogle Scholar
  54. Schmera, D., T. Erős and J. Heino. 2013. Habitat filtering determines spatial variation of macroinvertebrate community traits in northern headwater streams. Community Ecol. 14: 77–88.CrossRefGoogle Scholar
  55. Schmidlin, S., D. Schmera and B. Baur. 2012. Alien molluscs affect the composition and diversity of native macroinvertebrates in a sandy flat of Lake Neuchatel, Switzerland. Hydrobiologia 679: 233–249.CrossRefGoogle Scholar
  56. Stoll, P., K. Gatzsch, H.-P. Rusterholz and B. Baur. 2012. Response of plant and gastropod species to knotweed invasion. Basic Appl. Ecol. 13: 232–240.CrossRefGoogle Scholar
  57. Strijker, D. 2005. Marginal lands in Europe – causes of decline. Basic Appl. Ecol. 6: 99–106.CrossRefGoogle Scholar
  58. Tasser, E. and U. Tappeiner. 2002. Impact of land use changes on mountain vegetation. Appl. Veg. Sci. 5: 173–184.CrossRefGoogle Scholar
  59. Tattersfield, P. 1996. Local patterns of land-snail diversity in a Kenyan rain forest. Malacologia 38: 161–180.Google Scholar
  60. Tattersfield, P., C. M. Warui, M. B. Seddon and J. W. Kiringe. 2001. Land-snail faunas of afromontane forests of Mount Kenya, Kenya: ecology, diversity and distribution patterns. J. Biogeogr. 28: 843–861.CrossRefGoogle Scholar
  61. Turner, H., J.G.J. Kuiper, N. Thew, R. Bernasconi, J. Rüetschi, M. Wüthrich and M. Gosteli. 1998. Atlas der Mollusken der Schweiz und Liechtensteins. Fauna Helvetica 2: 1–527.Google Scholar
  62. Ulrich, W., M. Zalewski, I. Hajdamowicz, M. Stańska, W. Ciurzycki and P. Tykarski. 2010. Tourism disassembles patterns of co-occurrence and weakens responses to environmental conditions of spider communities on small lake islands. Community Ecol. 11: 5–12.CrossRefGoogle Scholar
  63. Viterbi, R., C. Cerrato, B. Bassano, R. Bionda, A. von Hardenberg, A. Provenzale and G. Bogliani. 2013. Patterns of biodiversity in the northwestern Italina Alps: a multi-taxa approach. Community Ecol. 14: 18–30.CrossRefGoogle Scholar
  64. Wilbur, H.M. 1987. Regulation of structure in complex systems: experimental temporary pond communities. Ecology 68: 1437–1452.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Section of Conservation Biology, Department of Environmental SciencesUniversity of BaselBaselSwitzerland
  2. 2.Balaton Limnological Institute, Centre for Ecological ResearchHungarian Academy of SciencesTihanyHungary

Personalised recommendations