Bird and beetle assemblages in relict beech forests of central Italy: a multi-taxa approach to assess the importance of dead wood in biodiversity conservation
Abstract
The awareness of the importance of deadwood in forest ecosystems has increased in recent decades. Today, dead wood is recognized as a key factor affecting diversity of forest communities. Hole-nesting birds and saproxylic organisms represent an active part of the animal community through the recycle of decaying wood into the forest soils. Three relict beech forests of central Italy were surveyed for both saproxylic beetles and hole-nesting birds, using two different types of interception traps for the former group and point count method for the latter. The variables of dead wood quality were recorded from ten plots, particularly the decaying class and typology of all the wood debris with a diameter ≥ 5 cm. In order to correlate richness and abundance of beetles and birds in a symmetric way, we used co-inertia analysis (CoIA). To correlate in a predictive way the dead wood attributes (dead wood typology and class decay) with birds and beetles assemblages we used partial redundancy analysis (RDA). Our results showed a significant relationship between saproxylic beetle and hole-nesting bird communities. Three dead wood variables (the volume of standing dead trees, stumps and large branches on the ground) appeared to be good predictors of saproxylic beetle richness while the volume of standing dead tree and of dead trees on the ground were the same for hole-nesting birds. These results suggest specific recommendations useful for forest management and planning.
Keywords
Animal diversity Dead wood decay classes Forest management Hole-nesting birds Saproxylic beetleAbbreviations
- CoIA
Co-Inertia Analysis
- PCA
Principal Components Analysis
- RDA
Redundancy Analysis
- VIF
Variance Inflation Factor
Preview
Unable to display preview. Download preview PDF.
Supplementary material
References
- Aitken, K.E.H. and K. Martin. 2007. The importance of excavators in hole-nesting communities: availability and use of natural trees holes in old mixed forest of western Canada. J. Ornithol. 148: 425–434.CrossRefGoogle Scholar
- Alexander, K.N.A. 2008. Tree biology and saproxylic Coleoptera: issues of definitions and conservation language. Rev. Ecol. (Terre Vie). 63:1–5.Google Scholar
- Alinvi, O., J. P. Ball, K. Danell, J. Hjaltén and R.B. Pettersson . 2007. Sampling saproxylic beetle assemblages in dead wood logs: comparing window and eclector traps to traditional bark sieving and a refinement. J. Insect Conserv. 11: 99–112.CrossRefGoogle Scholar
- Angelstam, P., and G. Mikusiński. 1994. Woodpecker assemblages in natural and managed boreal and hemiboreal forest—a review. Ann. Zool. Fenn. 31:157–172.Google Scholar
- Bellamy, P.E., S.A. Hinsley and I. Newton. 1996. Factors influencing bird species numbers in small woods in southeast England. J. Appl. Ecol. 33: 249–262.CrossRefGoogle Scholar
- Berglund, H. and B.G. Jonsson. 2005. Verifying an extinction debt among lichens and fungi in northern Swedish boreal forests. Conserv. Biol. 19: 338–348.CrossRefGoogle Scholar
- Bibby, C. J., N. D. Burgess, D. A. Hill and S. H. Mustoe. 2000. Bird Census Techniques, 2nd ed. Academic Press, London.Google Scholar
- Blanc, A. and J.R. Walters. 2008. Cavity excavation and enlargement as mechanisms for indirect interactions in an avian community. Ecology 89: 506–514.CrossRefPubMedGoogle Scholar
- Blondel, J., C. Ferry and B. Frochot. 1970. La méthode des indices ponctuels d’abondance (I.P.A.) ou des relevés d’avifaune par “stations d’écoute”. Alauda 38: 55–71.Google Scholar
- Bobiec, A., J.M. Gutowski, K. Zub, W.F. Laudenslayer, and P. Pawlaczyk. 2005. The Afterlife of a Tree.WWF Poland, War-szawa-Hajnówka.Google Scholar
- Borcard, D., F. Gillett and P. Legendre. 2011. Numerical Ecology with R, Use R. Springer New York Dordrecht London Heidelberg.CrossRefGoogle Scholar
- Bouchard, P., Y. Bousquet, A.E. Davies, M.A. Alonso-Zarazaga, J.F. Lawrence, C.H.C. Lyal, A.F. Newton, C.A.M. Reid, M. Schmitt, S.A. Ślipiński and A.B.T. Smith. 2011. Family-group names in Coleoptera (Insecta). ZooKeys 88: 1–972.CrossRefGoogle Scholar
- Bouget, C. and P. Duelli. 2004. The effects of windthrow on forest insect communities: a literature review. Biol. Conserv. 118: 281–299.CrossRefGoogle Scholar
- Bouget, C., H. Brustel, A. Brin and T. Noblecourt. 2008. Sampling Saproxylic beetles with window flight traps: methodological insights. Rev. Ecol. (Terre Vie). 63: 13–24.Google Scholar
- Braak, C. J. F. and A. P. Schaffers. 2004. Co-correspondence analysis: a new ordination method to relate two community compositions. Ecology. 85: 834–846.CrossRefGoogle Scholar
- Brazaitis, G. and P. Angelstam. 2004. Influence of edges between old deciduous forest and clearcuts on the abundance of passerine hole-nesting birds in Lithuania. Ecol. Bull. 51: 209–217.Google Scholar
- Brin, A., H. Brustel and H. Jactel. 2009. Species variables or environmental variables as indicators of forest biodiversity: a case study using saproxylic beetles in Maritime pine plantations. Ann. For. Sci. 66:1–11.CrossRefGoogle Scholar
- Brunet, J. and G. Isacsson. 2010. A comparison of the saproxylic beetle fauna between lowland and upland beech forests in southern Sweden. Ecol. Bull. 53:131–139.Google Scholar
- Brustel, H. 2004. ‘PolytrapTM’ a window flight trap for saproxylic beetles. Proceedings of the 3rd Symposium and Workshop on the Conservation of Saproxylic Beetles. (Riga / Latvia, 7th-11th July, 2004). Latvijas entomologs, (Suppl VI), pp. 128–129.Google Scholar
- Carpaneto, G.M., A. Mazziotta, G. Coletti, L. Luiselli and P. Audisio. 2010. Conflict between insect conservation and public safety: the case study of a saproxylic beetle (Osmoderma eremita) in urban parks. J. Insect Conserv. 14: 555–565.CrossRefGoogle Scholar
- Chiari, S., G.M. Carpaneto, A. Zauli, L. Marini, P. Audisio and T. Ranius. 2012. Habitat of an endangered saproxylic beetle, Osmoderma eremita, in Mediterranean woodlands. Ecoscience. 19: 299–307.CrossRefGoogle Scholar
- Christensen, M., K. Hahn, E. P. Mountford, P. Ódor, T. Standova, D. Rozenbergar, J. Diaci, S. Wijdeven, P. Meyer, S. Winter and T. Vrska. 2005. Dead wood in European beech (Fagus sylvatica) forest reserves. For. Ecol. Manage. 210: 267–282.CrossRefGoogle Scholar
- Cramp, S. 1985. Handbook of the Birds of Europe, the Middle East, and North Africa: The Birds of the Western Palearctic, Volume 4. Oxford University Press, Oxford.Google Scholar
- Daily, G.C., P.R. Ehrlich and N.M. Haddad. 1993. Double keystone bird in a keystone species complex. PNAS USA. 90: 592–594.CrossRefPubMedGoogle Scholar
- del Hoyo, J., A. Elliott and J. Sargatal. 2013. Handbook of the Birds of the World. Special Volume: New Species and Global Index. Lynx Editions, Barcelona.Google Scholar
- Djupström, L.B., J. Weslien and L.M. Schroeder. 2008. Deadwood and saproxylic beetles in set-aside and non set-aside forests in a boreal region. For. Ecol. Manage. 255: 3340–3350.CrossRefGoogle Scholar
- Drapeau, P., A. Nappi, L. Imbeau and M. Saint-Germain. 2009. Standing deadwood for keystone bird species in the eastern boreal forest: Managing for snag dynamics. The Forestry Chronicle. 85 (2):227–234.CrossRefGoogle Scholar
- Ewers, R.M. and R.K. Didham. 2006. Confounding factors in detection of species responses to habitat fragmentation. Biol. Reviews 81: 117–142.CrossRefGoogle Scholar
- Fauna Europaea. 2012. Fauna Europaea version 2.5. Web Service available online at https://doi.org/www.faunaeur.org.
- Frelich, L. E. and P. B. Reich. 2003. Perspectives on development of definitions and values related to old-growth forests. Environ. Rev. 11: 9–22.CrossRefGoogle Scholar
- Fuller, R.J., K.W. Smith and S.A. Hinsley. 2012 Temperate western European woodland as a dynamic habitat for birds: a resource-based view. In: R.J. Fuller (ed.), Birds and Habitat: Relationships in Changing Landscapes. Cambridge University Press, Cambridge, UK. pp. 352–380.CrossRefGoogle Scholar
- Gaston, K.J. 1994. Rarity. Chapman and Hall, London.CrossRefGoogle Scholar
- Gibbons, D.W. and R.D. Gregory. 2006. Birds. In: W.J. Sutherland (ed.). Ecological Census Techniques, 2nd ed. Cambridge University Press, Cambridge. pp. 308–350.CrossRefGoogle Scholar
- Gossner, M. M., S. Getzin, M. Lange, E. Pašalic´, M. Türke, K. Wiegand and W. W. Weisser. 2013. The importance of heterogeneity revisited from a multiscale and multitaxa approach. Biol. Conserv. 166: 212–220.CrossRefGoogle Scholar
- Graham, M.H. 2003. Confronting multicollinearity in ecological multiple regression. Ecology. 84: 2809–2815.CrossRefGoogle Scholar
- Grove, S.J. 2002. Saproxylic insect ecology and the sustainable management of Forests. Annu. Rev. Ecol. Syst. 33:1–23.CrossRefGoogle Scholar
- Henle, K., K.F. Davies, M. Kleyer, C. Margules and J. Settele. 2004. Predictors of species sensitivity to fragmentation. Biodiv. Conserv. 13: 207–251.CrossRefGoogle Scholar
- Hunter, M.L. 1990. Maintaining Biodiversity in Forest Ecosystems. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
- Jacobs, J.M., J.R. Spence and D.W. Langor. 2007. Influence of forest boreal succession and dead wood quality on saproxylic beetles. Agr. Forest. Entomol. 9:3–16.CrossRefGoogle Scholar
- Johansson, T., J. Hjalten, J. Hilszczanski, J. Stenlid, J.P. Ball, O. Alinvi and K. Danell. 2007. Variable response of different functional groups of saproxylic beetles to substrate manipulation and forest management: implications for conservation strategies. For. Ecol. Manage. 242: 496–510.CrossRefGoogle Scholar
- Johnsson, K., S.G. Nilsson and M. Tjernberg. 1990. The black woodpecker: a key species in European forest. In: A. Carlsson and G. Aulén (eds.), Conservation and Management of Woodpecker Population. Report 17. Swedish University of Agriculture Science, Department of Wildlife Ecology. pp. 99–102.Google Scholar
- Jonsell, M., J. Hansson and L. Wedmo. 2007. Diversity of saproxylic beetles species in logging residues in Sweden: comparison between tree species and diameters. Biol. Conserv. 138: 89–99.CrossRefGoogle Scholar
- Jonsell, M., J. Weslien and B. Ehnstrӧm. 1998. Substrate requirements of red-listed saproxylic invertebrates in Sweden. Biodivers. Conserv. 7:749–764.CrossRefGoogle Scholar
- Jonsson, B. G., N. Kruys and T. Ranius. 2005. Ecology of species living on dead wood-Lessons for dead wood management. Silva Fenn. 39: 289–309.CrossRefGoogle Scholar
- Lachat, T., C. Bouget, R. Bütler and J. Müller. 2013. Deadwood: quantitative and qualitative requirements for the conservation of saproxylic biodiversity. In: D. Kraus and F. Krumm (eds.) 2013. Integrative Approaches as an Opportunity for the Conservation of Forest Biodiversity. European Forest Institute. 284 pp.Google Scholar
- Laussace, A., Y. Paillet, H. Jactel and C. Bouget. 2011. Deadwood as a surrogate for forest biodiversity: meta-analysis of correlation between deadwood volume and species richness of saproxylic organisms. Ecol. Indic. 11: 1027–1039.CrossRefGoogle Scholar
- Legendre, P. and E. Gallagher. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.CrossRefPubMedPubMedCentralGoogle Scholar
- Lindhe, A. and Å. Lindelöw. 2004. Cut high stumps of spruce, birch, aspen and oak as breeding substrates for saproxylic beetles. For. Ecol. Manage. 203: 1–20.CrossRefGoogle Scholar
- Martin, K. and J.M. Eadie. 1999. Nest webs: A community-wide approach to the management and conservation of cavity-nesting forest birds. For. Ecol. Manage. 115: 243–257.CrossRefGoogle Scholar
- Martin, K., K.E.H. Aitken and K. L. Wiebe. 2004. Nest site and nest webs for cavity - nesting community in interior British Columbia, Canada: nest characteristics and niche partitioning. Condor. 106: 5–19.CrossRefGoogle Scholar
- Martin, T.E. and P. Li. 1992. Life history traits of open- vs. cavity-nesting birds. Ecology 73: 579–592.CrossRefGoogle Scholar
- Matthysen, E., L. Lens, S.Van Dongen, G.R. Verheyen, L.A.Wauters, F. Adriaensen and A.A. Dhondt. 1995. Diverse effects of forest fragmentation on a number of animal species. Belg. J. Zool. 125: 175–183.Google Scholar
- McGeoch, M.A., M. Schroeder, B. Ekbom and S. Larsson. 2007. Saproxylic beetle diversity in a managed boreal forest: importance of stand characteristics and forestry conservation measures. Divers. Distrib. 13: 418–429.CrossRefGoogle Scholar
- MCPFE. 2003. Improved pan-European indicators for sustainable forest management as adopted by the MCPFE Expert Level Meeting. In: Ministerial Conference on the Protection of Forests in Europe, Vienna, pp. 6.Google Scholar
- Mikusiňski, G., M. Gromadzki and P. Chylarecki. 2001. Woodpeckers as indicators of forest bird diversity. Biol.Conserv. 15: 208–217.CrossRefGoogle Scholar
- Müller, J. and R. Bütler. 2010. A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests. Eur. J. For. Res. 129: 981–992.CrossRefGoogle Scholar
- Müller, J., J. Brunet, A. Brin, C. Bouget, H. Brustel, H. Bussler, B. Fӧrster, G. Isacsson, F. Kӧhler, T. Lachat, and M.M. Gossner. 2012. Implications from large-scale spatial diversity patterns of saproxylic beetles for the conservation of European beech forests. Insect Conserv. Diver. 6(2): 162–169.CrossRefGoogle Scholar
- Murphy, E.C. and W.A. Lehnhausen. 1998. Density and foraging ecology of woodpeckers following a stand-replacement fire. J. Wildl. Manag. 62: 1359–1372.CrossRefGoogle Scholar
- Nappi A., P. Drapeau, J.-F. Giroux and J.-P.L. Savard. 2003. Snag use by foraging Black-backed Woodpeckers in a recently burned eastern boreal forest. Auk. 120: 505–511.CrossRefGoogle Scholar
- Nappi, A. 2009. Sélection d’habitat et démographie du Pic à dos noir (Picoides arcticus) dans les forêts brûlées de la forêt boréale. Ph.D. thesis, Université du Québec à Montréal. Montréal. 189 pp.Google Scholar
- Newton, I. 1998. Population Limitation in Birds. Academic Press, San Diego, California, USA.Google Scholar
- Nilsson, S.G. 1984. The evolution of nest-site selection among hole-nesting birds: the importance of nest predation and competition. Orn. Scand. 15: 167–175.CrossRefGoogle Scholar
- Økland, B., A. Bakke, S. Hagvar and T. Kvamme. 1996. What factors influence the diversity of saproxylic beetles? A multiscale study from a spruce forest in southern Norway. Biodivers. Conserv. 5: 75–100.CrossRefGoogle Scholar
- Olsson, O., U. Wiktander, A. Malmqvist, S. G. Nilsson. 2001. Variability of patch type preferences in relation to resource availability and breeding success in a bird. Oecologia. 127: 435–443.CrossRefPubMedGoogle Scholar
- Paclík, M. and K. Weidinger. 2007. Microclimate of trees cavities during winter nights: implication for roost site selection in birds. Int. J. Biometeorol. 51: 287–293.CrossRefPubMedGoogle Scholar
- Paillet, Y., L. Berges, J. Hjälten, P. Ódor, C. Avon, M. Bernhardt-Römermann, R.J. Bijlsma, L. De Bruyn, M. Fuhr, U. Graindin, R. Kanka, L. Lundin, S. Luque, T. Magura, S. Matesanz, I. Meszaros, M.T. Sebastia, W. Schmidt, T. Standovar, B. Tothmeresz, A. Uotila, F. Valladares, K. Vellak and R. Virtanen. 2010. Biodiversity differences between managed and unmanaged forests: meta- analysis of species richness in Europe. Conserv. Biol. 24: 101–112.CrossRefPubMedGoogle Scholar
- Pakkala, T., I. Hanski, and E. Tomppo. 2002. Spatial ecology of the three-toed woodpecker in managed forest landscapes. Silva Fenn. 36: 279–288.CrossRefGoogle Scholar
- Pasinelli, G. 2007. Nest site selection in middle and great spotted woodpeckers Dendrocopos medius & D. major: implications for forest management and conservation. Biodiv. Conserv. 16:1283–1298.CrossRefGoogle Scholar
- Peterken, G.F. 1996. Natural Woodland. Ecology and Conservation in Northern Temperate Regions. Cambridge University Press, Cambridge.Google Scholar
- Piovesan, G., A. Alessandrini, M. Baliva, T. Chiti, E. D’andrea, B. De Cinti, A. Di Filippo, L. Hermanin, M. Lauteri, G. Scarascia Mugnozza, B. Schirone, E. Ziaco and G. Matteucci. 2010. Structural patterns, growth processes, carbon stocks in an Italian network of old-growth beech forests. Italia Forestale e Montana (Italian Journal of Forest and Mountain Environments) 65: 557–590.CrossRefGoogle Scholar
- Ranius, T. 2002. Influence of stand size and quality of tree hollows on saproxylic beetles in Sweden. Biol.Conserv. 103: 85–91.CrossRefGoogle Scholar
- Ranius, T. and N. Jansson. 2000. The influence of forest regrowth, original canopy cover and tree size on saproxylic beetles associated with old oaks. Biol.Conserv. 95: 85–94.CrossRefGoogle Scholar
- Ranius, T., P. Eliasson and P. Johansson. 2008. Large-scale occurrence patterns of red-listed lichens and fungi on old oaks are influenced both by current and historical habitat density. Biodivers. Conserv. 17: 2371–2381.CrossRefGoogle Scholar
- Rao, C.R. 1995. A review of canonical coordinates and an alternative to correspondence analysis using Hellinger distance. Qüestiió (Cuadernos de Estadística e Investigación Operativa) 19: 23–63.Google Scholar
- R-Development Core Team. 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing.Google Scholar
- Remm, J., A. Lohmus and K. Remm. 2006. Tree cavities in riverine forests: what determines their occurrence and use by hole-nesting passerines? For. Ecol. Manage. 221: 267–277.CrossRefGoogle Scholar
- Rondeux, J. and C. Sanchez. 2010. Review of indicators and field methods for monitoring biodiversity within national forest inventories. Core variable: deadwood. Environ. Monit. Assess. 164: 617–630.CrossRefPubMedGoogle Scholar
- Rose, F. 1992. Temperate forest management, its effect on bryophyte and lichen floras and habitats. In: J.W. Bates and A.M. Farmer (eds.), Bryophytes and Lichens in a Changing Environment. Clarenden Press, Oxford, pp. 223–245.Google Scholar
- Schiegg, K. 2000. Effects of deadwood volume and connectivity on saproxylic insect species diversity. Ecoscience 7: 290–298.CrossRefGoogle Scholar
- Schiegg, K. 2001. Saproxylic insect diversity of beech: limbs are richer than trunk. For. Ecol. Manage. 149: 295–304.CrossRefGoogle Scholar
- Schuck, A., P. Meyer, N. Menke, M. Lier and M. Lindner. 2004. Forest biodiversity indicator: dead wood - A proposed approach towards operationalising the MCPFE indicator. In: M. Marchetti (ed.), Monitoring and indicators of forest biodiversity in Europe - from ideas to operationality. EFI Proceedings, pp. 49–77.Google Scholar
- Siitonen, J. 2001. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol. Bull. 49:11–41.Google Scholar
- Siitonen, J. and B.G. Jonsson. 2012. Other associations with dead wood material. In: J.N. Stokland, J. Siitonen and B.G. Jonsson. (eds.), Biodiversity in dead wood. Cambridge University Press, New York, pp. 58–76.CrossRefGoogle Scholar
- Siitonen, J., P. Martikainen, P. Punttila and J. Rauh. 2000. Coarse woody debris and stand characteristics in mature managed and old-growth boreal mesic forests in southern Finland. For. Ecol. Manage. 128: 211–225.CrossRefGoogle Scholar
- Similä, M., J. Kouki and P. Martikainen. 2003. Saproxylic beetles in managed and seminatural Scots pine forests: quality of dead wood matters. For. Ecol. Manage. 174: 365–381.CrossRefGoogle Scholar
- Speight, M.C.D. 1989. Saproxylic invertebrates and their conservation. Council of Europe, Publications and Documents Division, Strasbourg, France.Google Scholar
- Spies, T.A. 2004. Ecological concepts and diversity of old-growth forests. J. Forest. 102: 14–20.Google Scholar
- Stokland , J.N., S.M. Tomter, and U. Söderber. 2004. Development of Dead Wood Indicators for Biodiversity Monitoring: Experiences from Scandinavia. In: M. Marchetti (ed.), Monitoring and Indicators of forest biodiversity in Europe - from ideas to operationality, EFI Proceedings. pp.207–226.Google Scholar
- Stokland, J. N., J. Siitonen and B.G. Jonsson. 2012. Biodiversity in dead wood. Cambridge University Press, New York.CrossRefGoogle Scholar
- Stokland, J.N. 2012. The saproxylic food web. In: J.N. Stokland, J. Siitonen and B.G. Jonsson. (eds.), Biodiversity in dead wood. Cambridge University Press, New York, pp. 29–54.CrossRefGoogle Scholar
- Sutherland, W. 2006. Ecological Census Techniques, 2nd edn. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
- Thompson, W.L., G.C. White and C. Gowan. 1998. Monitoring vertebrate populations. Academic Press, San Diego, USA.Google Scholar
- Tutin, T. G., N. A. Burges, A. O. Chater, J. R. Edmondson, V. H. Heywood, D. M. Moore, D. H. Valentine, S. M. Walters and D. A. Webb. 1964–1993. Flora Europaea. Vols. 1–5 and Vol.1, ed.2., Cambridge University Press.Google Scholar
- Virkkala, R. 2006. Why study woodpeckers? The significance of woodpeckers in forest ecosystems. Ann. Zool. Fennici 43: 82–85.Google Scholar
- Wenger, K.F. 1984. Forestry handbook. 2nd ed. John Wiley & Sons, New York.Google Scholar
- Wesolowski, T. 2007. Lessons from long-term hole nesters studies in a primeval temperate forest. J. Ornithol. 148(2): 395–405.CrossRefGoogle Scholar
- Wesolowski, T. and P. Rowiński. 2012. The breeding performance of Blue Tits Cyanistes caeruleus in relation to the attributes of natural holes in a primeval forest. Bird Study 59: 437–448.CrossRefGoogle Scholar
- Wesolowski, T. and P. Rowiński. 2004. Breeding behaviour of Nuthatch Sitta europaea in relation to natural hole attributes in a primeval forest. Bird Study 51:143–155.CrossRefGoogle Scholar
- Wiebe, K.L. 2001. Microclimate of tree cavity nests: it is important for reproductive success in northen flickers? Auk 118: 412–421.CrossRefGoogle Scholar
- Zangari, L., M. Ferraguti, L. Luiselli, C. Battisti and M.A. Bologna. 2013. Comparing patterns in abundance and diversity of hole-nesting birds in Mediterranean habitats. Rev. Écol. (Terre Vie) 67: 1–8.Google Scholar
Copyright information
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.