Community Ecology

, Volume 15, Issue 2, pp 235–245 | Cite as

Bird and beetle assemblages in relict beech forests of central Italy: a multi-taxa approach to assess the importance of dead wood in biodiversity conservation

  • L. Redolfi De ZanEmail author
  • C. Battisti
  • G. M. Carpaneto


The awareness of the importance of deadwood in forest ecosystems has increased in recent decades. Today, dead wood is recognized as a key factor affecting diversity of forest communities. Hole-nesting birds and saproxylic organisms represent an active part of the animal community through the recycle of decaying wood into the forest soils. Three relict beech forests of central Italy were surveyed for both saproxylic beetles and hole-nesting birds, using two different types of interception traps for the former group and point count method for the latter. The variables of dead wood quality were recorded from ten plots, particularly the decaying class and typology of all the wood debris with a diameter ≥ 5 cm. In order to correlate richness and abundance of beetles and birds in a symmetric way, we used co-inertia analysis (CoIA). To correlate in a predictive way the dead wood attributes (dead wood typology and class decay) with birds and beetles assemblages we used partial redundancy analysis (RDA). Our results showed a significant relationship between saproxylic beetle and hole-nesting bird communities. Three dead wood variables (the volume of standing dead trees, stumps and large branches on the ground) appeared to be good predictors of saproxylic beetle richness while the volume of standing dead tree and of dead trees on the ground were the same for hole-nesting birds. These results suggest specific recommendations useful for forest management and planning.


Animal diversity Dead wood decay classes Forest management Hole-nesting birds Saproxylic beetle 



Co-Inertia Analysis


Principal Components Analysis


Redundancy Analysis


Variance Inflation Factor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2014_15020235_MOESM1_ESM.pdf (300 kb)
Supplementary material, approximately 307 KB.


  1. Aitken, K.E.H. and K. Martin. 2007. The importance of excavators in hole-nesting communities: availability and use of natural trees holes in old mixed forest of western Canada. J. Ornithol. 148: 425–434.CrossRefGoogle Scholar
  2. Alexander, K.N.A. 2008. Tree biology and saproxylic Coleoptera: issues of definitions and conservation language. Rev. Ecol. (Terre Vie). 63:1–5.Google Scholar
  3. Alinvi, O., J. P. Ball, K. Danell, J. Hjaltén and R.B. Pettersson . 2007. Sampling saproxylic beetle assemblages in dead wood logs: comparing window and eclector traps to traditional bark sieving and a refinement. J. Insect Conserv. 11: 99–112.CrossRefGoogle Scholar
  4. Angelstam, P., and G. Mikusiński. 1994. Woodpecker assemblages in natural and managed boreal and hemiboreal forest—a review. Ann. Zool. Fenn. 31:157–172.Google Scholar
  5. Bellamy, P.E., S.A. Hinsley and I. Newton. 1996. Factors influencing bird species numbers in small woods in southeast England. J. Appl. Ecol. 33: 249–262.CrossRefGoogle Scholar
  6. Berglund, H. and B.G. Jonsson. 2005. Verifying an extinction debt among lichens and fungi in northern Swedish boreal forests. Conserv. Biol. 19: 338–348.CrossRefGoogle Scholar
  7. Bibby, C. J., N. D. Burgess, D. A. Hill and S. H. Mustoe. 2000. Bird Census Techniques, 2nd ed. Academic Press, London.Google Scholar
  8. Blanc, A. and J.R. Walters. 2008. Cavity excavation and enlargement as mechanisms for indirect interactions in an avian community. Ecology 89: 506–514.CrossRefPubMedGoogle Scholar
  9. Blondel, J., C. Ferry and B. Frochot. 1970. La méthode des indices ponctuels d’abondance (I.P.A.) ou des relevés d’avifaune par “stations d’écoute”. Alauda 38: 55–71.Google Scholar
  10. Bobiec, A., J.M. Gutowski, K. Zub, W.F. Laudenslayer, and P. Pawlaczyk. 2005. The Afterlife of a Tree.WWF Poland, War-szawa-Hajnówka.Google Scholar
  11. Borcard, D., F. Gillett and P. Legendre. 2011. Numerical Ecology with R, Use R. Springer New York Dordrecht London Heidelberg.CrossRefGoogle Scholar
  12. Bouchard, P., Y. Bousquet, A.E. Davies, M.A. Alonso-Zarazaga, J.F. Lawrence, C.H.C. Lyal, A.F. Newton, C.A.M. Reid, M. Schmitt, S.A. Ślipiński and A.B.T. Smith. 2011. Family-group names in Coleoptera (Insecta). ZooKeys 88: 1–972.CrossRefGoogle Scholar
  13. Bouget, C. and P. Duelli. 2004. The effects of windthrow on forest insect communities: a literature review. Biol. Conserv. 118: 281–299.CrossRefGoogle Scholar
  14. Bouget, C., H. Brustel, A. Brin and T. Noblecourt. 2008. Sampling Saproxylic beetles with window flight traps: methodological insights. Rev. Ecol. (Terre Vie). 63: 13–24.Google Scholar
  15. Braak, C. J. F. and A. P. Schaffers. 2004. Co-correspondence analysis: a new ordination method to relate two community compositions. Ecology. 85: 834–846.CrossRefGoogle Scholar
  16. Brazaitis, G. and P. Angelstam. 2004. Influence of edges between old deciduous forest and clearcuts on the abundance of passerine hole-nesting birds in Lithuania. Ecol. Bull. 51: 209–217.Google Scholar
  17. Brin, A., H. Brustel and H. Jactel. 2009. Species variables or environmental variables as indicators of forest biodiversity: a case study using saproxylic beetles in Maritime pine plantations. Ann. For. Sci. 66:1–11.CrossRefGoogle Scholar
  18. Brunet, J. and G. Isacsson. 2010. A comparison of the saproxylic beetle fauna between lowland and upland beech forests in southern Sweden. Ecol. Bull. 53:131–139.Google Scholar
  19. Brustel, H. 2004. ‘PolytrapTM’ a window flight trap for saproxylic beetles. Proceedings of the 3rd Symposium and Workshop on the Conservation of Saproxylic Beetles. (Riga / Latvia, 7th-11th July, 2004). Latvijas entomologs, (Suppl VI), pp. 128–129.Google Scholar
  20. Carpaneto, G.M., A. Mazziotta, G. Coletti, L. Luiselli and P. Audisio. 2010. Conflict between insect conservation and public safety: the case study of a saproxylic beetle (Osmoderma eremita) in urban parks. J. Insect Conserv. 14: 555–565.CrossRefGoogle Scholar
  21. Chiari, S., G.M. Carpaneto, A. Zauli, L. Marini, P. Audisio and T. Ranius. 2012. Habitat of an endangered saproxylic beetle, Osmoderma eremita, in Mediterranean woodlands. Ecoscience. 19: 299–307.CrossRefGoogle Scholar
  22. Christensen, M., K. Hahn, E. P. Mountford, P. Ódor, T. Standova, D. Rozenbergar, J. Diaci, S. Wijdeven, P. Meyer, S. Winter and T. Vrska. 2005. Dead wood in European beech (Fagus sylvatica) forest reserves. For. Ecol. Manage. 210: 267–282.CrossRefGoogle Scholar
  23. Cramp, S. 1985. Handbook of the Birds of Europe, the Middle East, and North Africa: The Birds of the Western Palearctic, Volume 4. Oxford University Press, Oxford.Google Scholar
  24. Daily, G.C., P.R. Ehrlich and N.M. Haddad. 1993. Double keystone bird in a keystone species complex. PNAS USA. 90: 592–594.CrossRefPubMedGoogle Scholar
  25. del Hoyo, J., A. Elliott and J. Sargatal. 2013. Handbook of the Birds of the World. Special Volume: New Species and Global Index. Lynx Editions, Barcelona.Google Scholar
  26. Djupström, L.B., J. Weslien and L.M. Schroeder. 2008. Deadwood and saproxylic beetles in set-aside and non set-aside forests in a boreal region. For. Ecol. Manage. 255: 3340–3350.CrossRefGoogle Scholar
  27. Drapeau, P., A. Nappi, L. Imbeau and M. Saint-Germain. 2009. Standing deadwood for keystone bird species in the eastern boreal forest: Managing for snag dynamics. The Forestry Chronicle. 85 (2):227–234.CrossRefGoogle Scholar
  28. Ewers, R.M. and R.K. Didham. 2006. Confounding factors in detection of species responses to habitat fragmentation. Biol. Reviews 81: 117–142.CrossRefGoogle Scholar
  29. Fauna Europaea. 2012. Fauna Europaea version 2.5. Web Service available online at
  30. Frelich, L. E. and P. B. Reich. 2003. Perspectives on development of definitions and values related to old-growth forests. Environ. Rev. 11: 9–22.CrossRefGoogle Scholar
  31. Fuller, R.J., K.W. Smith and S.A. Hinsley. 2012 Temperate western European woodland as a dynamic habitat for birds: a resource-based view. In: R.J. Fuller (ed.), Birds and Habitat: Relationships in Changing Landscapes. Cambridge University Press, Cambridge, UK. pp. 352–380.CrossRefGoogle Scholar
  32. Gaston, K.J. 1994. Rarity. Chapman and Hall, London.CrossRefGoogle Scholar
  33. Gibbons, D.W. and R.D. Gregory. 2006. Birds. In: W.J. Sutherland (ed.). Ecological Census Techniques, 2nd ed. Cambridge University Press, Cambridge. pp. 308–350.CrossRefGoogle Scholar
  34. Gossner, M. M., S. Getzin, M. Lange, E. Pašalic´, M. Türke, K. Wiegand and W. W. Weisser. 2013. The importance of heterogeneity revisited from a multiscale and multitaxa approach. Biol. Conserv. 166: 212–220.CrossRefGoogle Scholar
  35. Graham, M.H. 2003. Confronting multicollinearity in ecological multiple regression. Ecology. 84: 2809–2815.CrossRefGoogle Scholar
  36. Grove, S.J. 2002. Saproxylic insect ecology and the sustainable management of Forests. Annu. Rev. Ecol. Syst. 33:1–23.CrossRefGoogle Scholar
  37. Henle, K., K.F. Davies, M. Kleyer, C. Margules and J. Settele. 2004. Predictors of species sensitivity to fragmentation. Biodiv. Conserv. 13: 207–251.CrossRefGoogle Scholar
  38. Hunter, M.L. 1990. Maintaining Biodiversity in Forest Ecosystems. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
  39. Jacobs, J.M., J.R. Spence and D.W. Langor. 2007. Influence of forest boreal succession and dead wood quality on saproxylic beetles. Agr. Forest. Entomol. 9:3–16.CrossRefGoogle Scholar
  40. Johansson, T., J. Hjalten, J. Hilszczanski, J. Stenlid, J.P. Ball, O. Alinvi and K. Danell. 2007. Variable response of different functional groups of saproxylic beetles to substrate manipulation and forest management: implications for conservation strategies. For. Ecol. Manage. 242: 496–510.CrossRefGoogle Scholar
  41. Johnsson, K., S.G. Nilsson and M. Tjernberg. 1990. The black woodpecker: a key species in European forest. In: A. Carlsson and G. Aulén (eds.), Conservation and Management of Woodpecker Population. Report 17. Swedish University of Agriculture Science, Department of Wildlife Ecology. pp. 99–102.Google Scholar
  42. Jonsell, M., J. Hansson and L. Wedmo. 2007. Diversity of saproxylic beetles species in logging residues in Sweden: comparison between tree species and diameters. Biol. Conserv. 138: 89–99.CrossRefGoogle Scholar
  43. Jonsell, M., J. Weslien and B. Ehnstrӧm. 1998. Substrate requirements of red-listed saproxylic invertebrates in Sweden. Biodivers. Conserv. 7:749–764.CrossRefGoogle Scholar
  44. Jonsson, B. G., N. Kruys and T. Ranius. 2005. Ecology of species living on dead wood-Lessons for dead wood management. Silva Fenn. 39: 289–309.CrossRefGoogle Scholar
  45. Lachat, T., C. Bouget, R. Bütler and J. Müller. 2013. Deadwood: quantitative and qualitative requirements for the conservation of saproxylic biodiversity. In: D. Kraus and F. Krumm (eds.) 2013. Integrative Approaches as an Opportunity for the Conservation of Forest Biodiversity. European Forest Institute. 284 pp.Google Scholar
  46. Laussace, A., Y. Paillet, H. Jactel and C. Bouget. 2011. Deadwood as a surrogate for forest biodiversity: meta-analysis of correlation between deadwood volume and species richness of saproxylic organisms. Ecol. Indic. 11: 1027–1039.CrossRefGoogle Scholar
  47. Legendre, P. and E. Gallagher. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lindhe, A. and Å. Lindelöw. 2004. Cut high stumps of spruce, birch, aspen and oak as breeding substrates for saproxylic beetles. For. Ecol. Manage. 203: 1–20.CrossRefGoogle Scholar
  49. Martin, K. and J.M. Eadie. 1999. Nest webs: A community-wide approach to the management and conservation of cavity-nesting forest birds. For. Ecol. Manage. 115: 243–257.CrossRefGoogle Scholar
  50. Martin, K., K.E.H. Aitken and K. L. Wiebe. 2004. Nest site and nest webs for cavity - nesting community in interior British Columbia, Canada: nest characteristics and niche partitioning. Condor. 106: 5–19.CrossRefGoogle Scholar
  51. Martin, T.E. and P. Li. 1992. Life history traits of open- vs. cavity-nesting birds. Ecology 73: 579–592.CrossRefGoogle Scholar
  52. Matthysen, E., L. Lens, S.Van Dongen, G.R. Verheyen, L.A.Wauters, F. Adriaensen and A.A. Dhondt. 1995. Diverse effects of forest fragmentation on a number of animal species. Belg. J. Zool. 125: 175–183.Google Scholar
  53. McGeoch, M.A., M. Schroeder, B. Ekbom and S. Larsson. 2007. Saproxylic beetle diversity in a managed boreal forest: importance of stand characteristics and forestry conservation measures. Divers. Distrib. 13: 418–429.CrossRefGoogle Scholar
  54. MCPFE. 2003. Improved pan-European indicators for sustainable forest management as adopted by the MCPFE Expert Level Meeting. In: Ministerial Conference on the Protection of Forests in Europe, Vienna, pp. 6.Google Scholar
  55. Mikusiňski, G., M. Gromadzki and P. Chylarecki. 2001. Woodpeckers as indicators of forest bird diversity. Biol.Conserv. 15: 208–217.CrossRefGoogle Scholar
  56. Müller, J. and R. Bütler. 2010. A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests. Eur. J. For. Res. 129: 981–992.CrossRefGoogle Scholar
  57. Müller, J., J. Brunet, A. Brin, C. Bouget, H. Brustel, H. Bussler, B. Fӧrster, G. Isacsson, F. Kӧhler, T. Lachat, and M.M. Gossner. 2012. Implications from large-scale spatial diversity patterns of saproxylic beetles for the conservation of European beech forests. Insect Conserv. Diver. 6(2): 162–169.CrossRefGoogle Scholar
  58. Murphy, E.C. and W.A. Lehnhausen. 1998. Density and foraging ecology of woodpeckers following a stand-replacement fire. J. Wildl. Manag. 62: 1359–1372.CrossRefGoogle Scholar
  59. Nappi A., P. Drapeau, J.-F. Giroux and J.-P.L. Savard. 2003. Snag use by foraging Black-backed Woodpeckers in a recently burned eastern boreal forest. Auk. 120: 505–511.CrossRefGoogle Scholar
  60. Nappi, A. 2009. Sélection d’habitat et démographie du Pic à dos noir (Picoides arcticus) dans les forêts brûlées de la forêt boréale. Ph.D. thesis, Université du Québec à Montréal. Montréal. 189 pp.Google Scholar
  61. Newton, I. 1998. Population Limitation in Birds. Academic Press, San Diego, California, USA.Google Scholar
  62. Nilsson, S.G. 1984. The evolution of nest-site selection among hole-nesting birds: the importance of nest predation and competition. Orn. Scand. 15: 167–175.CrossRefGoogle Scholar
  63. Økland, B., A. Bakke, S. Hagvar and T. Kvamme. 1996. What factors influence the diversity of saproxylic beetles? A multiscale study from a spruce forest in southern Norway. Biodivers. Conserv. 5: 75–100.CrossRefGoogle Scholar
  64. Olsson, O., U. Wiktander, A. Malmqvist, S. G. Nilsson. 2001. Variability of patch type preferences in relation to resource availability and breeding success in a bird. Oecologia. 127: 435–443.CrossRefPubMedGoogle Scholar
  65. Paclík, M. and K. Weidinger. 2007. Microclimate of trees cavities during winter nights: implication for roost site selection in birds. Int. J. Biometeorol. 51: 287–293.CrossRefPubMedGoogle Scholar
  66. Paillet, Y., L. Berges, J. Hjälten, P. Ódor, C. Avon, M. Bernhardt-Römermann, R.J. Bijlsma, L. De Bruyn, M. Fuhr, U. Graindin, R. Kanka, L. Lundin, S. Luque, T. Magura, S. Matesanz, I. Meszaros, M.T. Sebastia, W. Schmidt, T. Standovar, B. Tothmeresz, A. Uotila, F. Valladares, K. Vellak and R. Virtanen. 2010. Biodiversity differences between managed and unmanaged forests: meta- analysis of species richness in Europe. Conserv. Biol. 24: 101–112.CrossRefPubMedGoogle Scholar
  67. Pakkala, T., I. Hanski, and E. Tomppo. 2002. Spatial ecology of the three-toed woodpecker in managed forest landscapes. Silva Fenn. 36: 279–288.CrossRefGoogle Scholar
  68. Pasinelli, G. 2007. Nest site selection in middle and great spotted woodpeckers Dendrocopos medius & D. major: implications for forest management and conservation. Biodiv. Conserv. 16:1283–1298.CrossRefGoogle Scholar
  69. Peterken, G.F. 1996. Natural Woodland. Ecology and Conservation in Northern Temperate Regions. Cambridge University Press, Cambridge.Google Scholar
  70. Piovesan, G., A. Alessandrini, M. Baliva, T. Chiti, E. D’andrea, B. De Cinti, A. Di Filippo, L. Hermanin, M. Lauteri, G. Scarascia Mugnozza, B. Schirone, E. Ziaco and G. Matteucci. 2010. Structural patterns, growth processes, carbon stocks in an Italian network of old-growth beech forests. Italia Forestale e Montana (Italian Journal of Forest and Mountain Environments) 65: 557–590.CrossRefGoogle Scholar
  71. Ranius, T. 2002. Influence of stand size and quality of tree hollows on saproxylic beetles in Sweden. Biol.Conserv. 103: 85–91.CrossRefGoogle Scholar
  72. Ranius, T. and N. Jansson. 2000. The influence of forest regrowth, original canopy cover and tree size on saproxylic beetles associated with old oaks. Biol.Conserv. 95: 85–94.CrossRefGoogle Scholar
  73. Ranius, T., P. Eliasson and P. Johansson. 2008. Large-scale occurrence patterns of red-listed lichens and fungi on old oaks are influenced both by current and historical habitat density. Biodivers. Conserv. 17: 2371–2381.CrossRefGoogle Scholar
  74. Rao, C.R. 1995. A review of canonical coordinates and an alternative to correspondence analysis using Hellinger distance. Qüestiió (Cuadernos de Estadística e Investigación Operativa) 19: 23–63.Google Scholar
  75. R-Development Core Team. 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing.Google Scholar
  76. Remm, J., A. Lohmus and K. Remm. 2006. Tree cavities in riverine forests: what determines their occurrence and use by hole-nesting passerines? For. Ecol. Manage. 221: 267–277.CrossRefGoogle Scholar
  77. Rondeux, J. and C. Sanchez. 2010. Review of indicators and field methods for monitoring biodiversity within national forest inventories. Core variable: deadwood. Environ. Monit. Assess. 164: 617–630.CrossRefPubMedGoogle Scholar
  78. Rose, F. 1992. Temperate forest management, its effect on bryophyte and lichen floras and habitats. In: J.W. Bates and A.M. Farmer (eds.), Bryophytes and Lichens in a Changing Environment. Clarenden Press, Oxford, pp. 223–245.Google Scholar
  79. Schiegg, K. 2000. Effects of deadwood volume and connectivity on saproxylic insect species diversity. Ecoscience 7: 290–298.CrossRefGoogle Scholar
  80. Schiegg, K. 2001. Saproxylic insect diversity of beech: limbs are richer than trunk. For. Ecol. Manage. 149: 295–304.CrossRefGoogle Scholar
  81. Schuck, A., P. Meyer, N. Menke, M. Lier and M. Lindner. 2004. Forest biodiversity indicator: dead wood - A proposed approach towards operationalising the MCPFE indicator. In: M. Marchetti (ed.), Monitoring and indicators of forest biodiversity in Europe - from ideas to operationality. EFI Proceedings, pp. 49–77.Google Scholar
  82. Siitonen, J. 2001. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol. Bull. 49:11–41.Google Scholar
  83. Siitonen, J. and B.G. Jonsson. 2012. Other associations with dead wood material. In: J.N. Stokland, J. Siitonen and B.G. Jonsson. (eds.), Biodiversity in dead wood. Cambridge University Press, New York, pp. 58–76.CrossRefGoogle Scholar
  84. Siitonen, J., P. Martikainen, P. Punttila and J. Rauh. 2000. Coarse woody debris and stand characteristics in mature managed and old-growth boreal mesic forests in southern Finland. For. Ecol. Manage. 128: 211–225.CrossRefGoogle Scholar
  85. Similä, M., J. Kouki and P. Martikainen. 2003. Saproxylic beetles in managed and seminatural Scots pine forests: quality of dead wood matters. For. Ecol. Manage. 174: 365–381.CrossRefGoogle Scholar
  86. Speight, M.C.D. 1989. Saproxylic invertebrates and their conservation. Council of Europe, Publications and Documents Division, Strasbourg, France.Google Scholar
  87. Spies, T.A. 2004. Ecological concepts and diversity of old-growth forests. J. Forest. 102: 14–20.Google Scholar
  88. Stokland , J.N., S.M. Tomter, and U. Söderber. 2004. Development of Dead Wood Indicators for Biodiversity Monitoring: Experiences from Scandinavia. In: M. Marchetti (ed.), Monitoring and Indicators of forest biodiversity in Europe - from ideas to operationality, EFI Proceedings. pp.207–226.Google Scholar
  89. Stokland, J. N., J. Siitonen and B.G. Jonsson. 2012. Biodiversity in dead wood. Cambridge University Press, New York.CrossRefGoogle Scholar
  90. Stokland, J.N. 2012. The saproxylic food web. In: J.N. Stokland, J. Siitonen and B.G. Jonsson. (eds.), Biodiversity in dead wood. Cambridge University Press, New York, pp. 29–54.CrossRefGoogle Scholar
  91. Sutherland, W. 2006. Ecological Census Techniques, 2nd edn. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  92. Thompson, W.L., G.C. White and C. Gowan. 1998. Monitoring vertebrate populations. Academic Press, San Diego, USA.Google Scholar
  93. Tutin, T. G., N. A. Burges, A. O. Chater, J. R. Edmondson, V. H. Heywood, D. M. Moore, D. H. Valentine, S. M. Walters and D. A. Webb. 1964–1993. Flora Europaea. Vols. 1–5 and Vol.1, ed.2., Cambridge University Press.Google Scholar
  94. Virkkala, R. 2006. Why study woodpeckers? The significance of woodpeckers in forest ecosystems. Ann. Zool. Fennici 43: 82–85.Google Scholar
  95. Wenger, K.F. 1984. Forestry handbook. 2nd ed. John Wiley & Sons, New York.Google Scholar
  96. Wesolowski, T. 2007. Lessons from long-term hole nesters studies in a primeval temperate forest. J. Ornithol. 148(2): 395–405.CrossRefGoogle Scholar
  97. Wesolowski, T. and P. Rowiński. 2012. The breeding performance of Blue Tits Cyanistes caeruleus in relation to the attributes of natural holes in a primeval forest. Bird Study 59: 437–448.CrossRefGoogle Scholar
  98. Wesolowski, T. and P. Rowiński. 2004. Breeding behaviour of Nuthatch Sitta europaea in relation to natural hole attributes in a primeval forest. Bird Study 51:143–155.CrossRefGoogle Scholar
  99. Wiebe, K.L. 2001. Microclimate of tree cavity nests: it is important for reproductive success in northen flickers? Auk 118: 412–421.CrossRefGoogle Scholar
  100. Zangari, L., M. Ferraguti, L. Luiselli, C. Battisti and M.A. Bologna. 2013. Comparing patterns in abundance and diversity of hole-nesting birds in Mediterranean habitats. Rev. Écol. (Terre Vie) 67: 1–8.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • L. Redolfi De Zan
    • 1
    Email author
  • C. Battisti
    • 2
  • G. M. Carpaneto
    • 1
  1. 1.Department of SciencesRoma Tre UniversityRomaItaly
  2. 2.“Torre Flavia” LTER (Long Term Ecological Research) StationEnvironmental ServiceRomaItaly

Personalised recommendations