Community Ecology

, Volume 15, Issue 1, pp 87–93 | Cite as

Local and intermediated-intensity soil disturbances increase the colonization and expansion dynamics of an invasive plant in Southern Patagonian rangelands

  • R. B. RauberEmail author
  • P. A. Cipriotti
  • M. B. Collantes


Disturbances are important drivers in natural ecosystems, affecting the vegetation structure and functioning. Invasions of exotic plant species are often associated to disturbances in a complex manner, because they depend on the type, intensity, spatial and temporal arrangement of disturbances, and the particular abiotic and biotic context. Field studies that evaluate the dynamics of plant invasions under different disturbance regimes have a great importance for the understanding of the disturbance effects on invasion spread. In this work we evaluated, through a field manipulative experiment, the early colonization and expansion dynamics of an aggressive invader of grasslands, Hieracium pilosella L., under two disturbance types. We used a split-plot experiment by crossing three levels for a local, sporadic, of increasing intensity disturbance [i.e., 1- undisturbed, 2- vegetation mowing, and 3- ploughing], within two levels for an extensive and chronic disturbance (i.e., grazed and ungrazed). In the range of intensities of disturbance evaluated, the intermediate intensity (i.e., mowing) accelerated the colonization when it is grazed and the expansion of H. pilosella in ungrazed condition. In contrast, lower and higher intensity disturbances, such as ungrazed and ploughing treatments decelerated both invasion processes. Changes in resource availability, interspecific competition and particular characteristics of the invader, i.e., high light requirements, prostrate growth and the presence of stolons, could explain these early invasion patterns.


Exotic species Hieracium pilosella Plant invasion Plant spread Sheep grazing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anchorena, J., A. Cingolani, E. Livraghi, M.B. Collantes and S. Stoffella. 2001. Manejo del pastoreo de ovejas en Tierra del Fuego. EDIPUBLI S.A., Buenos Aires. ISBN 987-99049-2-3.Google Scholar
  2. Augustine, D.J. and S.J. McNaughton. 1998. Ungulate effects on the functional species composition of plant communities: herbivore selectivity and plant tolerance. J. Wildl. Manag. 62: 1165–1183.CrossRefGoogle Scholar
  3. Belsky, A.J. 1992. Effects of grazing, competition, disturbance and fire on species composition and diversity in grassland communities. J. Veg. Sci. 3: 187–200.CrossRefGoogle Scholar
  4. Bishop, G.F. and A.J. Davy. 1994. Hieracium pilosella L. (Pilosella officinarum F. Schultz & Schultz-Bip.). J. Ecol. 82: 195–210.CrossRefGoogle Scholar
  5. Catford, J.A., C.C. Daehler, H.T. Murphy, A.W. Sheppard, B.D. Hardesty, D.A. Westcott, M. Rejmánek, P.J. Bellingham, J. Pergl, C.C. Horvitz and P.E. Hulme. 2012. The intermediate disturbance hypothesis and plant invasions: Implications for species richness and management. Perspect. Plant. Ecol. Evol. Syst. 14: 231–241.CrossRefGoogle Scholar
  6. Chapman, H.M., D. Parh and N. Oraguzie. 2000. Genetic structure and colonizing success of a clonal, weedy species, Pilosella officinarum (Asteraceae). Heredity 84: 401–409.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cipriotti, P.A., R.B. Rauber, M.B. Collantes, K. Braun and C. Escartín. 2010. Hieracium pilosella invasion in the Tierra del Fuego steppe, Southern Patagonia. Biol. Inv. 12: 2523–2535.CrossRefGoogle Scholar
  8. Collantes, M.B., J. Anchorena and A.M. Cingolani. 1999. The steppes of Tierra del Fuego: floristic and growthform patterns controlled by soil fertility and moisture. Plant. Ecol. 140: 61–75.CrossRefGoogle Scholar
  9. Collantes, M.B., J. Anchorena, S. Stoffella, C. Escartín and R. Rauber. 2009. Wetlands in the fueguian steppe (Tierra del Fuego, Argentina). Folia Geobot. 44: 227–245.CrossRefGoogle Scholar
  10. Covacevich, N. 2009. Magallanes: veinte años de pilosella. Revista Tierra Adentro Nº 83. biblioteca-digital/. Accessed 19 November 2012Google Scholar
  11. De Rosario-Martinez H. 2013. phia: Post-Hoc Interaction Analysis. R package version 0.1-2. Scholar
  12. Di Rienzo J.A., Casanoves F., Balzarini M.G., Gonzalez L., Tablada M., Robledo C.W. 2008. InfoStat, versión 2008. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.Google Scholar
  13. Duggin, J.A. and C.B. Gentle. 1998. Experimental evidence on the importance of disturbance intensity for invasion of Lantana camara L. in dry rainforest-open forest ecotones in north- eastern NSW, Australia. Forest Ecol. Manag. 109: 279–292.CrossRefGoogle Scholar
  14. Dunn, P. 2013. tweedie: Tweedie exponential family models. R package version 2.1.7.Google Scholar
  15. El-Shaarawi A.H., Zhu R. and H. Joe. 2011. Modelling species abundance using the Poisson–Tweedie family. Environmetrics 22: 152–164.CrossRefGoogle Scholar
  16. Fan, J. and W. Harris. 1996. Effects of soil fertility and cutting frequency on interference among Hieracium pilosella, H. praealtum, Rumex acetosella, and Festuca novae-zelandiae. N. Z. J. Agric. Res. 39: 1–32.Google Scholar
  17. Ferraro, D.O. and M. Oesterheld. 2002. Effect of defoliation on grass growth. A quantitative review. Oikos 98:125–133.CrossRefGoogle Scholar
  18. Fleischner, T.L. 1994. Ecological costs of livestock grazing in Western North America. Conserv. Biol. 8: 629–644.CrossRefGoogle Scholar
  19. Foran, B.D., J. Bates, P. Murray, G. Heward and D. Pickens. 1992. A paddock based survey of management factors relating to mouse-ear hawkweed (Hieracium pilosella) dominance in Central Otago. In: G.G. Hunter, C.R. Mason, D.M. Robertson, (eds.), Vegetation Change in Tussock Grasslands, with Emphasis on Hawkweeds. Occasional Publication No. 2. New Zealand Ecological Society, Christchurch. pp. 64–67.Google Scholar
  20. Grime J.P. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111: 169–1194.CrossRefGoogle Scholar
  21. Grime, J.P. 1979. Plant Strategies and Vegetation Process. Wiley, Chichester.Google Scholar
  22. Gros, R., L.J. Monrozier, F. Bartoli, J.L. Chotte and P. Faivre. 2004. Relationships between soil physico-chemical properties and microbial activity along a restoration chronosequence of alpine grasslands following ski run construction. Appl. Soil Ecol. 27: 7–22.CrossRefGoogle Scholar
  23. Grove, P.B., A.F. Mark and K.J.M. Dickinson. 2002. Vegetation monitoring of recently protected tussock grasslands in the southern South Island, New Zealand. J. Royal Soc. N. Z. 32: 379–414.CrossRefGoogle Scholar
  24. Guo,Y-J., L. Han, G-D. Li, J-G. Han, G-L. Wang, Z-Y. Li and B. Wilson. 2012. The effects of defoliation on plant community, root biomass and nutrient allocation and soil chemical properties on semi-arid steppes in northern China. J. Arid. Env. 78: 128–134.CrossRefGoogle Scholar
  25. Hierro, J.L., D. Villarreal, Ö. Eren, J.M. Graham and R.M. Callaway. 2006. Disturbance facilitates invasion: the effects are stronger abroad than at home. Am. Nat. 168: 144–156.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Higgins, S.I. and D.M. Richardson. 1996. A review of models of alien plant spread. Ecol. Modell. 87: 249–265.CrossRefGoogle Scholar
  27. Hobbs, R.J. 1989. The nature and effects of disturbance relative to invasions. In: J.A. Drake, F. diCastri, R. Groves, F. Kruger, H. Mooney, M. Rejmanek and M. Williamson (eds.), Biological Invasions: A Global Perspective. Wiley and Sons, Chichester, UK, pp. 389–405.Google Scholar
  28. Hobbs, R.J. and L.F. Huenneke. 1992. Disturbance, diversity, and invasion: implications for conservation. Conserv. Biol. 6: 324–337.CrossRefGoogle Scholar
  29. Højsgaard, S., U. Halekoh and J. Yan. 2006. The R package geepack for generalized estimating equations. J. Stat. Softw. 15: 1–11.Google Scholar
  30. Hothorn, T., F. Bretz and P. Westfall. 2008. Simultaneous inference in general parametric models. Biom. J. 50: 346–363.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jenkins, T.A. 1992. A review of characteristics of mouse-ear hawk-weed (Hieracium pilosella). In: G.G. Hunter, C.R. Mason, D.M. Robertson, (eds.), Vegetation Change in Tussock Grasslands, With Emphasis on Hawkweeds. Occasional Publication No. 2, New Zealand Ecological Society, Christchurch. pp. 15–23.Google Scholar
  32. Jentsch, A. 2001. The significance of disturbance for vegetation dynamics. A case study in dry acidic grasslands. PhD Thesis, Bielefeld University.Google Scholar
  33. Jesson, L., D. Kelly and A. Sparrow. 2000. The importance of dispersal, disturbance, and competition for exotic plant invasions in Arthur´s Pass National Park, New Zealand. N. Z. J. Bot. 38: 451–468.CrossRefGoogle Scholar
  34. Johnstone, I.M. 1986. Plant invasion windows: a time-based classification of invasion potential. Biol. Rev. 61: 369–394.CrossRefGoogle Scholar
  35. Köhler, B., A. Gigon, P. Edwards, B. Krüsi, R. Langenauer, A. Lüscher and P. Ryser. 2005. Changes in the species composition and conservation value of limestone grasslands in Northern Switzerland after 22 years of contrasting managements. Perspect. Plant Ecol. Evol. Syst. 7: 51–67.CrossRefGoogle Scholar
  36. Koltunow A.M., S.D. Johnson and R.A. Bicknell. 1998. Sexual and apomictic development in Hieracium. Sex Plant Reproduction 11:213–230Google Scholar
  37. Kowarik, I. 2008. On the role of alien species in urban flora and vegetation. In: J.M. Marzluff, E. Shulenberger, W. Endlicher, M. Alberti, G. Bradley, C. Ryan, C. ZumBrunnen and U. Simon (eds.), Urban Ecology: An International Perspective on the Interaction Between Humans and Nature. Springer, New York. pp. 321–338.Google Scholar
  38. Łaska, G. 2001. The disturbance and vegetation dynamics: a review and an alternative framework. Plant Ecol. 157: 77–99.CrossRefGoogle Scholar
  39. Linderman, M.A., L. An, S. Bearer, G. He, Z. Ouyang and J. Liu. 2006. Interactive effects of natural and human disturbances on vegetation dynamics across landscapes. Ecol. Appl. 16: 452–463.CrossRefPubMedPubMedCentralGoogle Scholar
  40. López-Fando, C. and M.T. Pardo. 2009. Changes in soil chemical characteristics with different tillage practices in a semi-arid environment. Soil Tillage Res. 104: 278–284.CrossRefGoogle Scholar
  41. Makepeace, W., A.T. Dobson and D. Scott. 1985. Interference phenomena due to mouse-ear and king devil hawkweed. N. Z. J. Bot. 23: 79–90.CrossRefGoogle Scholar
  42. McCann, K. 2007. Protecting biostructure. Biodiversity researchers have focused on diversity at the cost of ignoring the networks of interactions between organisms that characterize ecosystems. Nature 446: 29.CrossRefPubMedPubMedCentralGoogle Scholar
  43. McIntyre, S. and S. Lavorel. 1994. How environmental and disturbance factors shape composition in temperate Australian grassland communities. J. Veg. Sci. 5: 373–384.CrossRefGoogle Scholar
  44. Meurk, C.D., S. Walker, R.S. Gibson and P. Espie. 2002. Changes in vegetation in grazed and ungrazed Mackenzie Basin grasslands, New Zealand, 1990–2000. N. Z. J. Ecol. 26: 95–106.Google Scholar
  45. Milchunas, D.G. and W.K. Lauenroth. 1993. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol. Monogr. 63: 327–366.CrossRefGoogle Scholar
  46. O’Connor, K.F., A.H. Nordmeyer and K. Svavarsdóttir. 1999. Changes in biomass and soil nutrient pools of tall tussock grasslands in New Zealand. In: O. Arnalds and S. Archer (eds.), Case Studies of Rangeland Desertification. Proceedings from an international workshop in Iceland. Rala Report No. 200. Agricultural Research Institute, Reykjavik. pp. 125–145.Google Scholar
  47. Pausas, J.G., F. Lloret and M. Vilà. 2006. Simulating the effects of different disturbance regimes on Cortadeira selloana invasion. Biol. Conserv. 128: 128–135.CrossRefGoogle Scholar
  48. Pinheiro, J., D. Bates, S. DebRoy and D. Sarkar. 2009. The nlme package: linear and nonlinear mixed effects models. URL: Scholar
  49. Rauber, R.B. 2011. Invasión de Hieracium pilosella L. en pastizales de Tierra del Fuego. Ph.D. Thesis. Universidad de Buenos Aires.Google Scholar
  50. Rauber, R.B., M.B. Collantes, P.A. Cipriotti and J. Anchorena. 2012. Biotic and abiotic constraints to a plant invasion in vegetation communities of Tierra del Fuego. Austral Ecol. DOI: 10.1111/j.1442-9993.2012.02427.xGoogle Scholar
  51. Renne, I.J., B.F. Tracy and I.A. Colonna. 2006. Shifts in grassland invasibility: effects of soil resources, disturbance, composition, and invader size. Ecology 87: 2264–2277.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Rogstad, A., T.M. Bean, A. Olsson and G.M. Casady. 2009. Fire and invasive species management in hot deserts: resources, strategies, tactics, and response. Rangelands 31: 6–13.CrossRefGoogle Scholar
  53. Rose, A.B., L.R. Basher, S.K. Wiser, K.H. Platt and I.H. Lynn. 1998. Factors predisposing short-tussock grasslands to Hieracium invasion in Marlborough, New Zealand. N. Z. J. Ecol. 22: 121–140.Google Scholar
  54. Rose, A.B., K.H. Platt and C.M. Frampton. 1995. Vegetation change over 25 years in a New Zealand short- tussock grassland: effects of sheep grazing and exotic invasions. N. Z. J. Ecol. 19:163–174.Google Scholar
  55. Rotundo, J.L. and M.R. Aguiar. 2005. Litter effects on plant regeneration in arid lands: a complex balance between seed retention, seed longevity and soil–seed contact. J. Ecol. 93: 829–838.CrossRefGoogle Scholar
  56. Scheepens, J.F. 2004. Sexual Versus Vegetative Reproduction In Hieracium Pilosella In Different Habitat Types. Lund University Applied Work - Project ReportGoogle Scholar
  57. Schurr, F.M., W.J. Bond, G.F. Midgley and S.I. Higgins. 2005. A mechanistic model for secondary seed dispersal by wind and its experimental validation. J. Ecol. 93: 1017–1028.CrossRefGoogle Scholar
  58. Serra, J. 1990. Relevamiento pasturas implantadas en Tierra del Fuego. Informe técnico, Consejo Federal de Inversiones, Buenos Aires.Google Scholar
  59. Shea, K., Roxburgh, S.H. and Raushert, E.S.J. 2004. Moving from pattern to process: coexistence mechanisms under intermediate disturbance regimes. Ecol. Lett. 7: 491–508.CrossRefGoogle Scholar
  60. Sørensen, T. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. Det Kong. Danske Vidensk. Selsk. Biol. Skr. (Copenhagen) 5:1–34.Google Scholar
  61. Spence, L.A., J.V. Ross, S.K. Wiser, R.B. Allen and D.A. Coomes. 2011. Disturbance affects short-term facilitation, but not long-term saturation, of exotic plant invasion in New Zealand forest. Proc. R. Soc. B 278: 1457–1466.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Stockfisch, N., T. Forstreuter and W. Ehlers. 1999. Ploughing effects on soil organic matter after twenty years of conservation tillage in Lower Saxony, Germany. Soil Tillage Res. 52: 91–101.CrossRefGoogle Scholar
  63. Stöcklin J. and E. Winkler. 2004. Optimum reproduction and dispersal strategies of a clonal plant in a metapopulation: a simulation study with Hieracium pilosella. Evol. Ecol. 18: 563–584.Google Scholar
  64. Treskonova, M. 1991. Changes in the structure of tall tussock grasslands and infestation by species of Hieracium in the Mackenzie Country, New Zealand. N. Z. J. Ecol. 15:65–78.Google Scholar
  65. Vander Kloet, S.P. 1978. Biogeography of Hieracium pilosella L. in North America with special reference to Nova Scotia. Proc. N. S. Inst. Sci. 28: 127–134.Google Scholar
  66. Vavra, M., C.G. Parks and M.J. Wisdom. 2007. Biodiversity, exotic plant species, and herbivory: the good, the bad, and the ungulate. Ecol. Manag. 246: 66–72.CrossRefGoogle Scholar
  67. Walker, S., J.B. Wilson and W.G. Lee. 2005. Does fluctuating resource availability increase invasibility? Evidence from field experiments in New Zealand short tussock grassland. Biol. Inv. 7: 195–211.CrossRefGoogle Scholar
  68. Walter, H. and E.O. Box. 1983. Climate of Patagonia. In: West, N.E. (ed.) Ecosystems of the World, Vol. 5. Temperate deserts and semi-deserts. Elsevier, Oxford. pp. 432–435.Google Scholar
  69. West, N.E. 1993. Biodiversity of rangelands. J. Range Manag. 46: 2–13.CrossRefGoogle Scholar
  70. White, P.S. and A. Jentsch. 2001. The search for generality in studies of disturbance and ecosystem dynamics. In: Esser, K., U. Lüttge, J.W. Kadereit and W. Beyschlag (eds.), Prog. Bot. 62. Springer, Berlin, Heidelberg. pp. 399–450.Google Scholar
  71. White P.S. and S.T.A. Pickett. 1985. Natural disturbance and patch dynamics: an introduction. In: S.T.A. Pickett and P.S. White (eds.), The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, Orlando, Florida. pp. 3–13.Google Scholar
  72. Wilson, H. 1992. Regeneration after fire on the Leibig Range, Mount Cook National Park; the role of hawkweeds (Hieracium spp.) during the first 20 years. In: G.G. Hunter, C.R. Mason, D.M. Robertson, (eds.), Vegetation Change in Tussock Grasslands, With Emphasis on Hawkweeds. Occasional Publication No.2, New Zealand Ecological Society, Christchurch. p 44.Google Scholar
  73. Winkler, E. and J. Stöcklin. 2002. Sexual and vegetative reproduction of Hieracium pilosella L. under competition and disturbance: a grid-based simulation model. Ann. Bot. 89: 525–536.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zuur, A.F., E.N. Ieno, N.J. Walker, A.A. Saveliev and G.M. Smith. 2009. Mixed Effects Models and Extensions in Ecology with R. Springer. New York, USA.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • R. B. Rauber
    • 1
    • 2
    • 4
    Email author
  • P. A. Cipriotti
    • 1
    • 3
  • M. B. Collantes
    • 1
  1. 1.Laboratorio de Ecología de Pastizales, Museo Argentino de Ciencias NaturalesBuenos AiresArgentina
  2. 2.Instituto Nacional de Tecnología Agropecuaria (INTA)Villa Mercedes, San LuisArgentina
  3. 3.Dpto. de Métodos Cuantitativos y Sistemas de Información, IFEVA, Facultad de AgronomíaUniversidad de Buenos Aires / CONICETBuenos AiresArgentina
  4. 4.Instituto Nacional de Tecnología Agropecuaria (INTA)San LuisArgentina

Personalised recommendations