Trophic links and the relationship between predator and prey body sizes in food webs

Abstract

The relationship between predator and prey body sizes is an important property of food webs with potential implications for community dynamics and ecosystem functioning. To shed more light on this issue I here analyze the relationships between prey size, predator size and trophic position of consumers, using body size estimates of 697 species in 52 food webs. First I show that the relationship between predator and prey body sizes across many systems can be different from, and potentially obscure the true relationship within systems. More specifically, when data from all webs are aggregated average prey size is positively correlated to predator size with a regression slope less than unity, suggesting that predators become less similar in size to their average prey the larger the predator is, and consequently that the relative size difference between a predator and its prey should increase with the trophic position of the consumer. However, despite this I find the predator-prey body mass ratio to be negatively correlated to the trophic position of the consumer within many webs. The reason for this is that the across-webs pattern is not representative for the within-web relationship. Second, I show that the pattern observed is not compatible with a simple null-model for the distribution of trophic links between predators and prey. The observed relationship between predator size and mean prey size is for most webs significantly steeper than that predicted by the cascade model. Furthermore, the observed relationship also deviates significantly (but less so) from an ecologically more realistic model for the distribution of trophic links (the niche model). The results contradict the traditional Eltonian paradigm that predator-prey body mass ratios do not vary consistently across trophic levels. It is concluded that more studies are needed to establish the generality of the results and explore its dynamical implications.

References

  1. Aljetlawi, A.A., Sparrevik, E. and Leonardsson, K. 2004. Preypredator size-dependent functional response: derivation and rescaling to the real world. J. Animal Ecol. 73: 239–252.

    Article  Google Scholar 

  2. Banasek-Richter, C., Cattin, M.F. and Bersier, L.F. 2004. Sampling effects and the robustness of quantitative and qualitative food-web descriptors. J. Theor. Biol. 226: 23–32.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Berg, S., Christianou, M., Jonsson, T. and Ebenman, B. 2011. Using sensitivity analysis to identify keystone species and keystone links in size-based food webs. Oikos 120: 510–519.

    Article  Google Scholar 

  4. Berlow, E.L., Dunne, J.A., Martinez, N.D., Stark, P.B., Williams, R.J. and Brose, U. 2009. Simple prediction of interaction strengths in complex food webs. PNAS 106: 187–191.

  5. Bersier, L.F. and Kehrli, P. 2008. The signature of phylogenetic constraints on food-web structure. Ecol. Complex. 5: 132–139.

    Article  Google Scholar 

  6. Boit A., Martinez N.D., Williams, R.J. and Gaedke, U. 2012. Mechanistic theory and modelling of complex food-web dynamics in Lake Constance. Ecol. Lett. 15: 594–602.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Brose, U. 2008. Complex food webs prevent competitive exclusion among producer species. PNAS 275: 2507–2514.

  8. Brose, U. 2010. Body-mass constraints on foraging behaviour determine population and food-web dynamics. Funct. Ecol. 24: 28–34.

    Article  Google Scholar 

  9. Brose, U., Cushing, L., Berlow, E.L., Jonsson, T., Banasek-Richter, C., Bersier, L.F., Blanchard, J.L., Brey, T., Carpenter, S.R., Cattin Blandenier, M.-F., Cohen, J.E., Dawah, H.A., Dell, T., Edwards, F., Harper-Smith, S., Jacob, U., Knapp, R.A., Ledger, M.E., Memmott, J., Mintenbeck, K., Pinnegar, J.K., Rall, B.C., Rayner, T., Ruess, L., Ulrich, W., Warren, P., Williams, R.J., Woodward, G., Yodzis, P. and Martinez, N.D. 2005. Body sizes of consumers and their resources. Ecology 86: 2545.

    Article  Google Scholar 

  10. Brose, U., Ehnes, R.B., Rall, B.C., Vucic-Pestic, O., Berlow, E.L. and Scheu, S. 2008. Foraging theory predicts predator-prey energy fluxes. J. Animal Ecol. 77: 1072–1078.

    Article  CAS  Google Scholar 

  11. Brose, U., Jonsson, T., Berlow, E.L., Warren, P., Banasek-Richte,r C., Bersier, L.F., Blanchard, J.L., Brey, T., Carpenter, S.R., Cattin Blandenier, M.-F., Cushing, L., Dawah, H.A., Dell, T., Edwards, F., Harper-Smith, S., Jacob, U., Ledger, M.E., Martinez, N.D., Memmott, J., Mintenbeck, K., Pinnegar, J.K., Rall, B.C., Rayner, T., Reuman, D.C., Ruess, L., Ulrich, W., Williams, R.J., Woodward, G. and Cohen, J.E. 2006a. Consumer-resource bodysize relationships in natural food webs. Ecology 87: 2411–2417.

  12. Brose, U., Williams, R.J. and Martinez, N.D. 2006b. Allometric scaling enhances stability in complex food webs. Ecol. Lett. 9: 1228–1236.

  13. Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. and West, G.B. 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.

    Article  Google Scholar 

  14. Calder, W.A. 1984. Size, function, and life history. Harvard University Press, Cambridge, MA, USA.

  15. Cattin, M.F., Bersier, L.F., Banasek-Richter, C., Baltensperger, R. and Gabriel, J.P. 2004. Phylogenetic constraints and adaptation explain food-web structure. Nature 427: 835–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cohen, J.E. 1977. Ratio of prey to predators in community webs. Nature 270:165–167

  17. Cohen, J.E. 1978. Food webs and niche space. Monographs in Population Biology 11. Princeton University Press

  18. Cohen, J.E. 1989a. ECOWeB; Ecologists’ Co-Operative Web Bank. The Rockefeller University,

  19. Cohen, J.E. 1989b. Food webs and community structure. - In: Roughgarden, J., May, R.M. and Levin, S.A. (eds.), Perspectives in ecological theory. Princeton University Press, Princeton, NJ, USA, pp. 181–202.

  20. Cohen, J.E., Briand, F. and Newman, C.M. 1990. Community food webs: data and theory. Springer Verlag, Berlin, Germany.

  21. Cohen, J.E., Jonsson, T. and Carpenter, S.R. 2003. Ecological community description using the food web, species abundance, and body size. PNAS 100: 1781–1786.

  22. Cohen, J.E. and Newman, C.M. 1985. A stochastic theory of community food webs I. Models and aggregated data. Proc. Royal Soc. London, Series B 224: 421–448.

    Article  Google Scholar 

  23. Cohen, J.E., Pimm, S.L., Yodzis, P. and SaldañAAAA, J. 1993. Body sizes of animal predators and animal prey in food webs. J. Animal Ecol. 62: 67–78.

    Article  Google Scholar 

  24. Costa, G.C. 2009. Predator size, prey size, and dietary niche breadth relationships in marine predators. Ecology 90: 2014–2019.

    Article  PubMed  PubMed Central  Google Scholar 

  25. De Ruiter, P., Neutel, A.-M. and Moore, J.C. 1995. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269: 1257–1260.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Emmerson, M.C., Montoya, J.M. and Woodward, G. 2005. Body size, interaction strength, and food web dynamics. In: deRuiter P.C, Wolters V. and Moore J.C. (eds.), Dynamic food webs. Academic Press, Boston, MA, USA, pp. 167–178.

  27. Emmerson, M.C. and Raffaelli, D. 2004. Predator-prey body size, interaction strength and the stability of a real food web. J. Animal Ecol. 73: 399–409.

    Article  Google Scholar 

  28. Elton, C. 1927. Animal Ecology. Reprint, 2001, University of Chicago Press edn. Sidgewick and Jackson, London.

    Google Scholar 

  29. Goldwasser, L. and Roughgarden, J. 1997. Sampling effects and the estimation of food web properties. Ecology 78: 41–54.

    Article  Google Scholar 

  30. Gotelli, N.J. and Graves, G.R. 1997. Null Models in Ecology. Smithsonian Institution Press, Washington, USA.

    Google Scholar 

  31. Ings, T.C., Montoya, J.M., Bascompte, J., Bluthgen, N., Brown, L., Dormann, C.F., Edwards, F., Figueroa, D., Jacob, U., Jones, J.I., Lauridsen, R.B., Ledger, M.E., Lewis, H.M., Olesen, J.M., van Veen, F.J.F., Warren, P.H. and Woodward, G. 2009. Ecological networks - beyond food webs. J. Animal Ecol. 78: 253–269.

    Article  Google Scholar 

  32. Jonsson, T. 1998 Food webs and the distribution of body sizes. Linköping studies in Science and Technology. Dissertation No. 535, UniTryck, Linköping, Sweden.

  33. Jonsson ,T., Cohen, J.E. and Carpenter, S.R. 2005. Food webs, body size, and species abundance in ecological community description. Adv. Ecol. Res. 36: 1–84.

    Article  Google Scholar 

  34. Jonsson, T. and Ebenman, B. 1998. Effects of predator-prey body size ratios on the stability of food chains. J. Theor. Biol. 193: 407–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Loeuille, N. and Loreau, M. 2004. Nutrient enrichment and food chains: can evolution buffer top-down control? Theor. Popul. Biol. 65: 285–298.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Martinez, N. D. 1994. Scale-dependent constraints on food-web structure. Amer. Nat. 144: 935–953.

    Article  Google Scholar 

  37. McCann, K., Hastings, A. and Huxel, G.R. 1998. Weak trophic interactions and the balance of nature. Nature 395: 794–798.

    Article  CAS  Google Scholar 

  38. Neubert, M.G., Blumenshine, S.C., Duplisea, D.E., Jonsson, T. and Rashleigh, B. 2000. Body size and food web structure: testing the equiprobability assumption of the cascade model. Oecologia 123: 241–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Neutel, A.-M., Heesterbeek, J.A.P. and De Ruiter, P.C. 2002. Stability in real food webs: weak links in long loops. Science 296: 1120–1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Neutel, A.M., Heesterbeek, J.A.P., van de Koppel, J., Hoenderboom, G., Vos, A., Kaldeway, C., Berendse, F. and de Ruiter, P.C. 2007. Reconciling complexity with stability in naturally assembling food webs. Nature 449: 599–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. O’Gorman, E. J., Jacob, U., Jonsson, T. and Emmerson, M.C. 2010. Interaction strength, food web topology and the relative importance of species in food webs. J. Animal Ecol. 79: 682–692.

    Article  Google Scholar 

  42. Otto, S.B., Berlow, E.L., Rank, N.E., Smiley, J. and Brose, U. 2008. Predator diversity and identity drive interaction strength and trophic cascades in a food web. Ecology 89: 134–144.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Otto, S.B., Rall, B.C. and Brose, U. 2007. Allometric degree distributions facilitate food-web stability. Nature 450: 1226–1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Paine, R.T. 1988. Food webs: road maps of interactions or grist for theoretical development? Ecology 69: 1648–1654.

    Article  Google Scholar 

  45. Persson, L., Leonardsson, K., de Roo,s A.M., Gyllenberg, M. and Christensen, B. 1998. Ontogenetic scaling of foraging rates and the dynamics of a size-structured consumer-resource model. Theor. Popul. Biol. 54: 270–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Petchey, O.L., Beckerman, A.P., Riede, J.O. and Warren, P.H. 2008. Size, foraging, and food web structure. PNAS 105: 4191–4196.

  47. Peters, R.H. 1983. The ecological implications of body size. Cambridge University Press, New York, USA.

  48. Peters, R.H. 1988. Some general problems for ecology illustrated by food web theory. Ecology 69: 1673–1676.

    Article  Google Scholar 

  49. Pimm, S.L. and Lawton, J.H. 1977. Number of trophic levels in ecological communities. Nature 268: 329–331.

    Article  Google Scholar 

  50. Pimm, S.L. and Lawton, J.H. 1978. On feeding on more than one trophic level. Nature 275: 542–544.

    Article  Google Scholar 

  51. Rall, B.C., Guill, C. and Brose, U. 2008. Food-web connectance and predator interference dampen the paradox of enrichment. Oikos 117: 202–213.

    Article  Google Scholar 

  52. Reuman, D.C. and Cohen, J.E. 2005. Estimating relative energy fluxes using the food web, species abundance, and body size. Adv. Ecol. Res. 36: 137–182.

    Article  Google Scholar 

  53. Reuman, D.C., Mulder, C., Banasek-Richter, C., Blandenier, M.F.C., Breure, A.M., Den Hollander, H., Kneitel, J.M., Raffaelli, D., Woodward, G. and Cohen, J.E. 2009. Allometry of Body Size and Abundance in 166 Food Webs. Adv. Ecol. Res. 41: 1–44.

    Article  Google Scholar 

  54. Riede, J.O., Brose, U., Ebenman, B., Jacob, U., Thompson, R., Townsend, C. R. and Jonsson, T. 2011. Stepping in Elton’s foot- prints: a general scaling model for body masses and trophic levels across ecosystems. Ecol. Lett. 14: 169–178.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rooney, N., McCann, K., Gellner, G. and Moore, J.C. 2006. Structural asymmetry and the stability of diverse food webs. Nature 442: 265–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schoener, T.W. 1989. Food webs from the small to the large. Ecology 70: 1559–1589.

    Article  Google Scholar 

  57. Stouffer, D.B., Camacho, J., Guimera, R., Ng, C.A. and Amaral, L.A.N. 2005. Quantitative patterns in the structure of model and empirical food webs. Ecology 86: 1301–1311.

    Article  Google Scholar 

  58. Vézina, A.F. 1985. Empirical relationships between predator and prey size among terrestrial vertebrate predators. Oecologia 67: 555–565.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Vucic-Pestic, O., Rall, B.C., Kalinkat, G. and Brose, U. 2010. Allometric functional response model: body masses constrain interaction strengths. J. Animal Ecol. 79: 249–256.

    Article  Google Scholar 

  60. Warren, P.H. and Lawton, J.H. 1987. Invertebrate predator-prey body size relationships - an explanation for upper-triangular food webs and patterns in food web structure. Oecologia 74: 231–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Weitz, J.S. and Levin, S.A. 2006. Size and scaling of predator-prey dynamics. Ecol. Lett. 9: 548–557.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Williams, R.J. and Martinez, N.D. 2000. Simple rules yield complex food webs. Nature 404: 180–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Williams, R.J. and Martinez, N.D. 2004. Limits to trophic levels and omnivory in complex food webs: theory and data. Am. Nat. 163: 458–468.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Williams, R.J. and Martinez, N.D. 2008. Success and limits among structural models of complex food webs. J. Animal Ecol. 77: 512–519.

    Article  Google Scholar 

  65. Woodward, G., Ebenman, B., Ernmerson, M., Montoya, J.M., Olesen, J.M., Valido, A. and Warren, P.H. 2005. Body size in ecological networks. Trends Ecol. Evol. 20: 402–409.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wootton, J.T. and Emmerson, M. 2005. Measurement of interaction strength in nature. Annual Rev. Ecol. Evol. Systems 36: 419–444.

    Article  Google Scholar 

  67. Yodzis, P. 1984. Energy flow and the vertical structure of real ecosystems. Oecologia 65: 86–88.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Jonsson.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jonsson, T. Trophic links and the relationship between predator and prey body sizes in food webs. COMMUNITY ECOLOGY 15, 54–64 (2014). https://doi.org/10.1556/ComEc.15.2014.1.6

Download citation

Keywords

  • Cascade model
  • Food webs
  • Niche model
  • Predator-prey body size ratios
  • Trophic links
  • Trophic structure