Advertisement

Community Ecology

, Volume 15, Issue 1, pp 54–64 | Cite as

Trophic links and the relationship between predator and prey body sizes in food webs

  • T. JonssonEmail author
Article

Abstract

The relationship between predator and prey body sizes is an important property of food webs with potential implications for community dynamics and ecosystem functioning. To shed more light on this issue I here analyze the relationships between prey size, predator size and trophic position of consumers, using body size estimates of 697 species in 52 food webs. First I show that the relationship between predator and prey body sizes across many systems can be different from, and potentially obscure the true relationship within systems. More specifically, when data from all webs are aggregated average prey size is positively correlated to predator size with a regression slope less than unity, suggesting that predators become less similar in size to their average prey the larger the predator is, and consequently that the relative size difference between a predator and its prey should increase with the trophic position of the consumer. However, despite this I find the predator-prey body mass ratio to be negatively correlated to the trophic position of the consumer within many webs. The reason for this is that the across-webs pattern is not representative for the within-web relationship. Second, I show that the pattern observed is not compatible with a simple null-model for the distribution of trophic links between predators and prey. The observed relationship between predator size and mean prey size is for most webs significantly steeper than that predicted by the cascade model. Furthermore, the observed relationship also deviates significantly (but less so) from an ecologically more realistic model for the distribution of trophic links (the niche model). The results contradict the traditional Eltonian paradigm that predator-prey body mass ratios do not vary consistently across trophic levels. It is concluded that more studies are needed to establish the generality of the results and explore its dynamical implications.

Keywords

Cascade model Food webs Niche model Predator-prey body size ratios Trophic links Trophic structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aljetlawi, A.A., Sparrevik, E. and Leonardsson, K. 2004. Preypredator size-dependent functional response: derivation and rescaling to the real world. J. Animal Ecol. 73: 239–252.CrossRefGoogle Scholar
  2. Banasek-Richter, C., Cattin, M.F. and Bersier, L.F. 2004. Sampling effects and the robustness of quantitative and qualitative food-web descriptors. J. Theor. Biol. 226: 23–32.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Berg, S., Christianou, M., Jonsson, T. and Ebenman, B. 2011. Using sensitivity analysis to identify keystone species and keystone links in size-based food webs. Oikos 120: 510–519.CrossRefGoogle Scholar
  4. Berlow, E.L., Dunne, J.A., Martinez, N.D., Stark, P.B., Williams, R.J. and Brose, U. 2009. Simple prediction of interaction strengths in complex food webs. PNAS 106: 187–191.Google Scholar
  5. Bersier, L.F. and Kehrli, P. 2008. The signature of phylogenetic constraints on food-web structure. Ecol. Complex. 5: 132–139.CrossRefGoogle Scholar
  6. Boit A., Martinez N.D., Williams, R.J. and Gaedke, U. 2012. Mechanistic theory and modelling of complex food-web dynamics in Lake Constance. Ecol. Lett. 15: 594–602.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brose, U. 2008. Complex food webs prevent competitive exclusion among producer species. PNAS 275: 2507–2514.Google Scholar
  8. Brose, U. 2010. Body-mass constraints on foraging behaviour determine population and food-web dynamics. Funct. Ecol. 24: 28–34.CrossRefGoogle Scholar
  9. Brose, U., Cushing, L., Berlow, E.L., Jonsson, T., Banasek-Richter, C., Bersier, L.F., Blanchard, J.L., Brey, T., Carpenter, S.R., Cattin Blandenier, M.-F., Cohen, J.E., Dawah, H.A., Dell, T., Edwards, F., Harper-Smith, S., Jacob, U., Knapp, R.A., Ledger, M.E., Memmott, J., Mintenbeck, K., Pinnegar, J.K., Rall, B.C., Rayner, T., Ruess, L., Ulrich, W., Warren, P., Williams, R.J., Woodward, G., Yodzis, P. and Martinez, N.D. 2005. Body sizes of consumers and their resources. Ecology 86: 2545.CrossRefGoogle Scholar
  10. Brose, U., Ehnes, R.B., Rall, B.C., Vucic-Pestic, O., Berlow, E.L. and Scheu, S. 2008. Foraging theory predicts predator-prey energy fluxes. J. Animal Ecol. 77: 1072–1078.CrossRefGoogle Scholar
  11. Brose, U., Jonsson, T., Berlow, E.L., Warren, P., Banasek-Richte,r C., Bersier, L.F., Blanchard, J.L., Brey, T., Carpenter, S.R., Cattin Blandenier, M.-F., Cushing, L., Dawah, H.A., Dell, T., Edwards, F., Harper-Smith, S., Jacob, U., Ledger, M.E., Martinez, N.D., Memmott, J., Mintenbeck, K., Pinnegar, J.K., Rall, B.C., Rayner, T., Reuman, D.C., Ruess, L., Ulrich, W., Williams, R.J., Woodward, G. and Cohen, J.E. 2006a. Consumer-resource bodysize relationships in natural food webs. Ecology 87: 2411–2417.Google Scholar
  12. Brose, U., Williams, R.J. and Martinez, N.D. 2006b. Allometric scaling enhances stability in complex food webs. Ecol. Lett. 9: 1228–1236.Google Scholar
  13. Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. and West, G.B. 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.CrossRefGoogle Scholar
  14. Calder, W.A. 1984. Size, function, and life history. Harvard University Press, Cambridge, MA, USA.Google Scholar
  15. Cattin, M.F., Bersier, L.F., Banasek-Richter, C., Baltensperger, R. and Gabriel, J.P. 2004. Phylogenetic constraints and adaptation explain food-web structure. Nature 427: 835–839.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cohen, J.E. 1977. Ratio of prey to predators in community webs. Nature 270:165–167Google Scholar
  17. Cohen, J.E. 1978. Food webs and niche space. Monographs in Population Biology 11. Princeton University PressGoogle Scholar
  18. Cohen, J.E. 1989a. ECOWeB; Ecologists’ Co-Operative Web Bank. The Rockefeller University,Google Scholar
  19. Cohen, J.E. 1989b. Food webs and community structure. - In: Roughgarden, J., May, R.M. and Levin, S.A. (eds.), Perspectives in ecological theory. Princeton University Press, Princeton, NJ, USA, pp. 181–202.Google Scholar
  20. Cohen, J.E., Briand, F. and Newman, C.M. 1990. Community food webs: data and theory. Springer Verlag, Berlin, Germany.Google Scholar
  21. Cohen, J.E., Jonsson, T. and Carpenter, S.R. 2003. Ecological community description using the food web, species abundance, and body size. PNAS 100: 1781–1786.Google Scholar
  22. Cohen, J.E. and Newman, C.M. 1985. A stochastic theory of community food webs I. Models and aggregated data. Proc. Royal Soc. London, Series B 224: 421–448.CrossRefGoogle Scholar
  23. Cohen, J.E., Pimm, S.L., Yodzis, P. and SaldañAAAA, J. 1993. Body sizes of animal predators and animal prey in food webs. J. Animal Ecol. 62: 67–78.CrossRefGoogle Scholar
  24. Costa, G.C. 2009. Predator size, prey size, and dietary niche breadth relationships in marine predators. Ecology 90: 2014–2019.CrossRefPubMedPubMedCentralGoogle Scholar
  25. De Ruiter, P., Neutel, A.-M. and Moore, J.C. 1995. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269: 1257–1260.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Emmerson, M.C., Montoya, J.M. and Woodward, G. 2005. Body size, interaction strength, and food web dynamics. In: deRuiter P.C, Wolters V. and Moore J.C. (eds.), Dynamic food webs. Academic Press, Boston, MA, USA, pp. 167–178.Google Scholar
  27. Emmerson, M.C. and Raffaelli, D. 2004. Predator-prey body size, interaction strength and the stability of a real food web. J. Animal Ecol. 73: 399–409.CrossRefGoogle Scholar
  28. Elton, C. 1927. Animal Ecology. Reprint, 2001, University of Chicago Press edn. Sidgewick and Jackson, London.Google Scholar
  29. Goldwasser, L. and Roughgarden, J. 1997. Sampling effects and the estimation of food web properties. Ecology 78: 41–54.CrossRefGoogle Scholar
  30. Gotelli, N.J. and Graves, G.R. 1997. Null Models in Ecology. Smithsonian Institution Press, Washington, USA.Google Scholar
  31. Ings, T.C., Montoya, J.M., Bascompte, J., Bluthgen, N., Brown, L., Dormann, C.F., Edwards, F., Figueroa, D., Jacob, U., Jones, J.I., Lauridsen, R.B., Ledger, M.E., Lewis, H.M., Olesen, J.M., van Veen, F.J.F., Warren, P.H. and Woodward, G. 2009. Ecological networks - beyond food webs. J. Animal Ecol. 78: 253–269.CrossRefGoogle Scholar
  32. Jonsson, T. 1998 Food webs and the distribution of body sizes. Linköping studies in Science and Technology. Dissertation No. 535, UniTryck, Linköping, Sweden.Google Scholar
  33. Jonsson ,T., Cohen, J.E. and Carpenter, S.R. 2005. Food webs, body size, and species abundance in ecological community description. Adv. Ecol. Res. 36: 1–84.CrossRefGoogle Scholar
  34. Jonsson, T. and Ebenman, B. 1998. Effects of predator-prey body size ratios on the stability of food chains. J. Theor. Biol. 193: 407–417.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Loeuille, N. and Loreau, M. 2004. Nutrient enrichment and food chains: can evolution buffer top-down control? Theor. Popul. Biol. 65: 285–298.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Martinez, N. D. 1994. Scale-dependent constraints on food-web structure. Amer. Nat. 144: 935–953.CrossRefGoogle Scholar
  37. McCann, K., Hastings, A. and Huxel, G.R. 1998. Weak trophic interactions and the balance of nature. Nature 395: 794–798.CrossRefGoogle Scholar
  38. Neubert, M.G., Blumenshine, S.C., Duplisea, D.E., Jonsson, T. and Rashleigh, B. 2000. Body size and food web structure: testing the equiprobability assumption of the cascade model. Oecologia 123: 241–251.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Neutel, A.-M., Heesterbeek, J.A.P. and De Ruiter, P.C. 2002. Stability in real food webs: weak links in long loops. Science 296: 1120–1123.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Neutel, A.M., Heesterbeek, J.A.P., van de Koppel, J., Hoenderboom, G., Vos, A., Kaldeway, C., Berendse, F. and de Ruiter, P.C. 2007. Reconciling complexity with stability in naturally assembling food webs. Nature 449: 599–602.CrossRefPubMedPubMedCentralGoogle Scholar
  41. O’Gorman, E. J., Jacob, U., Jonsson, T. and Emmerson, M.C. 2010. Interaction strength, food web topology and the relative importance of species in food webs. J. Animal Ecol. 79: 682–692.CrossRefGoogle Scholar
  42. Otto, S.B., Berlow, E.L., Rank, N.E., Smiley, J. and Brose, U. 2008. Predator diversity and identity drive interaction strength and trophic cascades in a food web. Ecology 89: 134–144.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Otto, S.B., Rall, B.C. and Brose, U. 2007. Allometric degree distributions facilitate food-web stability. Nature 450: 1226–1229.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Paine, R.T. 1988. Food webs: road maps of interactions or grist for theoretical development? Ecology 69: 1648–1654.CrossRefGoogle Scholar
  45. Persson, L., Leonardsson, K., de Roo,s A.M., Gyllenberg, M. and Christensen, B. 1998. Ontogenetic scaling of foraging rates and the dynamics of a size-structured consumer-resource model. Theor. Popul. Biol. 54: 270–293.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Petchey, O.L., Beckerman, A.P., Riede, J.O. and Warren, P.H. 2008. Size, foraging, and food web structure. PNAS 105: 4191–4196.Google Scholar
  47. Peters, R.H. 1983. The ecological implications of body size. Cambridge University Press, New York, USA.Google Scholar
  48. Peters, R.H. 1988. Some general problems for ecology illustrated by food web theory. Ecology 69: 1673–1676.CrossRefGoogle Scholar
  49. Pimm, S.L. and Lawton, J.H. 1977. Number of trophic levels in ecological communities. Nature 268: 329–331.CrossRefGoogle Scholar
  50. Pimm, S.L. and Lawton, J.H. 1978. On feeding on more than one trophic level. Nature 275: 542–544.CrossRefGoogle Scholar
  51. Rall, B.C., Guill, C. and Brose, U. 2008. Food-web connectance and predator interference dampen the paradox of enrichment. Oikos 117: 202–213.CrossRefGoogle Scholar
  52. Reuman, D.C. and Cohen, J.E. 2005. Estimating relative energy fluxes using the food web, species abundance, and body size. Adv. Ecol. Res. 36: 137–182.CrossRefGoogle Scholar
  53. Reuman, D.C., Mulder, C., Banasek-Richter, C., Blandenier, M.F.C., Breure, A.M., Den Hollander, H., Kneitel, J.M., Raffaelli, D., Woodward, G. and Cohen, J.E. 2009. Allometry of Body Size and Abundance in 166 Food Webs. Adv. Ecol. Res. 41: 1–44.CrossRefGoogle Scholar
  54. Riede, J.O., Brose, U., Ebenman, B., Jacob, U., Thompson, R., Townsend, C. R. and Jonsson, T. 2011. Stepping in Elton’s foot- prints: a general scaling model for body masses and trophic levels across ecosystems. Ecol. Lett. 14: 169–178.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Rooney, N., McCann, K., Gellner, G. and Moore, J.C. 2006. Structural asymmetry and the stability of diverse food webs. Nature 442: 265–269.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Schoener, T.W. 1989. Food webs from the small to the large. Ecology 70: 1559–1589.CrossRefGoogle Scholar
  57. Stouffer, D.B., Camacho, J., Guimera, R., Ng, C.A. and Amaral, L.A.N. 2005. Quantitative patterns in the structure of model and empirical food webs. Ecology 86: 1301–1311.CrossRefGoogle Scholar
  58. Vézina, A.F. 1985. Empirical relationships between predator and prey size among terrestrial vertebrate predators. Oecologia 67: 555–565.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Vucic-Pestic, O., Rall, B.C., Kalinkat, G. and Brose, U. 2010. Allometric functional response model: body masses constrain interaction strengths. J. Animal Ecol. 79: 249–256.CrossRefGoogle Scholar
  60. Warren, P.H. and Lawton, J.H. 1987. Invertebrate predator-prey body size relationships - an explanation for upper-triangular food webs and patterns in food web structure. Oecologia 74: 231–235.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Weitz, J.S. and Levin, S.A. 2006. Size and scaling of predator-prey dynamics. Ecol. Lett. 9: 548–557.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Williams, R.J. and Martinez, N.D. 2000. Simple rules yield complex food webs. Nature 404: 180–183.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Williams, R.J. and Martinez, N.D. 2004. Limits to trophic levels and omnivory in complex food webs: theory and data. Am. Nat. 163: 458–468.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Williams, R.J. and Martinez, N.D. 2008. Success and limits among structural models of complex food webs. J. Animal Ecol. 77: 512–519.CrossRefGoogle Scholar
  65. Woodward, G., Ebenman, B., Ernmerson, M., Montoya, J.M., Olesen, J.M., Valido, A. and Warren, P.H. 2005. Body size in ecological networks. Trends Ecol. Evol. 20: 402–409.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Wootton, J.T. and Emmerson, M. 2005. Measurement of interaction strength in nature. Annual Rev. Ecol. Evol. Systems 36: 419–444.CrossRefGoogle Scholar
  67. Yodzis, P. 1984. Energy flow and the vertical structure of real ecosystems. Oecologia 65: 86–88.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of EcologySwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations