Community Ecology

, Volume 15, Issue 1, pp 44–53 | Cite as

Land snail diversity and composition in relation to ecological variations in Central European floodplain forests and their history

  • J. HoráčkováEmail author
  • M. Horsák
  • L. Juřičková
Open Access


We explored patterns of land snail assemblages using 93 alluvial forest sites in six river floodplains of the Elbe drainage basin (northwestern Bohemia, Czech Republic). Differences in species richness and composition across the four floodplain forest types (i.e., alder carrs, ash-alder forests, willow-poplar softwood forests, and hardwood forests) were analysed using generalized linear models, multidimensional scaling and redundancy analysis with the Monte Carlo permutation test. The studied floodplain forest types did not differ in species richness, except for the alder carrs which were significantly poorer. The number of species expressed a significant unimodal response along with elevation and Ellenberg nutrients, and further significantly decreased towards the most humid sites. Contrary to species richness, the main forest types clearly differed based on land snail species composition, with the exception of the ash-alder and willow-poplar forest sites which became completely overlapped in the ordination space. The main changes in species composition were mostly associated with elevation and Ellenberg moisture on the first MDS axis: Ellenberg nutrients and light were fitted on the second and the third axes, respectively. These variables, along with calcium content estimated using Ellenberg indicator values for soil reaction, had significant effects on the variation and snail species composition in the final RDA model. No response of either species richness or compositional changes was found for the measured content of topsoil calcium, most likely due to the higher importance of other variables. On the basis of some recently published data we can conclude that historical development and long-term human activities on the succession of floodplain assemblages have resulted in a sharp impoverishment of strictly land snail species of several hardwood forest sites in the majority of lower river stretches. Whilst in most areas there are no exact palaeoecological data available, these historical influences were closely correlated with the site elevation in our dataset as the main difference in species composition was hard to explain solely using environmental predictors.


Compositional changes Historical development River floodplain Species richness Terrestrial gastropods 



Ellenberg’s Indicator Values


Generalized Linear Model


Multidimensional Scaling


Redundancy Analysis


Horsák et al. (2010a) for land snails Chytrý and Tichý (2003) for vascular plants 

Supplementary material

42974_2014_1501044_MOESM1_ESM.pdf (130 kb)
Supplementary material, approximately 133 KB.


  1. Bába, K. 1977. Die kontinentalen Schneckenbestände der Eichen-Ulmen- Eschen-Auwäldern (Fraxino pannonicae-Ulmetum pannonicum Soó) in der Ungarischen Tiefebene. Malacologia 16: 51–57.Google Scholar
  2. Boycott, A.E. 1934. The habitats of land Mollusca in Britain. J. Ecol. 22: 1–38.CrossRefGoogle Scholar
  3. Brown, A.G. 1999. Biodiversity and pollen analysis: modern pollen studies and the recent history of floodplain woodland in S. W. Ireland. J. Biogeogr. 26: 19–32.CrossRefGoogle Scholar
  4. Brown, A.G. 2009. Colluvial and alluvial response to land use change in Midland England: an integrated geoarcheological approach. Geomorphology 108: 92–106.CrossRefGoogle Scholar
  5. Brown, A.G., D. Harper and G.F. Peterken. 1997. European floodplain forests: structure, functioning and management. Global Ecol. Biogeogr. 6: 169–178.CrossRefGoogle Scholar
  6. Burch, J.B. 1955. Some ecological factors of the soil affecting the distribution and abundance of terrestrial gastropods in eastern Virginia. The Nautilus 69: 62–69.Google Scholar
  7. Břízová, E. and L. Juřičková. 2011. Can canopy forests survive agricultural colonization in the Polabí lowland (Czech Republic)? B. Geosci. 86: 283–300.CrossRefGoogle Scholar
  8. Cameron, R.A.D., K. Down and D.J. Pannett. 1980. Historical and environmental influences on hedgerow snail faunas. Biol. J. Linnean Soc. 13: 75–87.CrossRefGoogle Scholar
  9. Cameron, R.A.D. and B.M. Pokryszko. 2005. Estimating the species richness and composition of land mollusc communities: problems, consequences and practical advice. J. Conchol. 38: 529–548.Google Scholar
  10. Cernohorsky, N., M. Horsák and R.A.D. Cameron. 2010. Land snail species richness and abundance at small scales: the effects of distinguishing between live individuals and empty shells. J. Conchol. 40: 233–241.Google Scholar
  11. Čejka, T . 1999. The terrestrial molluscan fauna of the Danubian floodplain (Slovakia). Biologia 54: 489–500.Google Scholar
  12. Čejka, T . 2003. Molluscs (Mollusca). In: V. Stanová and A. Viceníková (eds.), Biodiversity of Abrod - State, Changes and Restoration. Daphne - Institute of Applied Ecology, Bratislava. pp. 187–190.Google Scholar
  13. Čejka, T. and L. Hamerlík. 2009. Land snails as indicators of soil humidity in Danubian woodland (SW Slovakia). Pol. J. Ecol. 57: 741–747.Google Scholar
  14. Čejka, T., M. Horsák and D. Némethová. 2008. The composition and richness of Danubian floodplain forest land snail faunas in relation to forest type and flood frequency. J. Mollusc. Stud. 74: 37–45.CrossRefGoogle Scholar
  15. Chytrý, M. and L. Tichý. 2003. Diagnostic, constant and dominant species of vegetation classes and alliances of the Czech Republic: a statistical revision. Folia Fac. Sci. Nat. Univ. Masaryk. Brun., Biol. 108: 1–231.Google Scholar
  16. Dangles, O., M. Jonsson and B. Malmqvist. 2002. The importance of detritivore species diversity for maintaining stream ecosystem functioning following the invasion of a riparian plant. Biol. Invasions 4: 441–446.Google Scholar
  17. Dotterweich, M. 2008. The history of soil erosion and fluvial deposits in small catchments of central Europe: deciphering the long term interaction between humans and the environment - a review. Geomorphology 101: 192–208.CrossRefGoogle Scholar
  18. Dvořáková, J. and M. Horsák. 2012. Variation of snail assemblages in hay meadows: disentangling the predictive power of abiotic environment and vegetation. Malacologia 55: 151–162.CrossRefGoogle Scholar
  19. Ellenberg, H., H.E. Weber, R. Düli, V. Wirth, W. Werner and D. Paulißen. 1992. Zeigerwerte von Pflanzen in Mitteleuropa, second ed. Scr. Geobot. 18: 1–258.Google Scholar
  20. Faith, D.P., P.R. Minchin and L. Belbin. 1987. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69: 57–68.CrossRefGoogle Scholar
  21. Frank, C. 1984. Aquatische und terrestrische Mollusken der niederösterreichischen Donau - Auengebiete und der angrenzenden Biotope. VI. Die Donau von Wien bis zur Staatsgrenze. Teil. 1. Z. Angew. Zool. 3: 257–303.Google Scholar
  22. Frank, C. 1985. Aquatische und terrestrische Mollusken der niederösterreichischen Donau - Auengebiete und der angrenzenden Biotope. VI. Die Donau von Wien bis zur Staatsgrenze. Teil 2. Z. Angew. Zool. 4: 405–457.Google Scholar
  23. Getz, L.L. and G.W. Uetz. 1994. Species diversity of terrestrial snails in the southern Appalachian mountains, U.S.A. Malacol. Review 27: 61–74.Google Scholar
  24. Gleich, J.G. and F.F. Gilbert. 1976. A survey of terrestrial gastropods from central Maine. Can. J. Zool. 54: 620–627.CrossRefGoogle Scholar
  25. Gurnell, A. 1977. The hydrological and geomorphological significance of forested floodplains. Global Ecol. Biogeogr. 6: 219–229.CrossRefGoogle Scholar
  26. Hastie, T.J. and Tibshirani, R.J. 1990. Generalized Additive Models. Chapman & Hall, London.Google Scholar
  27. Hejda, M., P. Pyšek and V. Jarošík. 2009. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 97: 393–403.CrossRefGoogle Scholar
  28. Hettenbergerová, E., M. Horsá, R. Chandran, M. Hájek, D. Zelený and J. Dvořáková. (in press). Patterns of land snail assemblages along a fine-scale moisture gradient. Malacologia.Google Scholar
  29. Holyoak, D. and M. Seddon. 1984. Devensian and Flandrian fossiliferous deposits in the Nene valley, central England. Mercian. Geol. 9: 127–150.Google Scholar
  30. Horáčková, J., V. Ložek and L. Juřičková. 2011a. Nivní malakofauna řeky Ohře - její minulost a současnost [The floodplain molluscan fauna of the Ohře River (Czech Republic) - its past and present]. Malacol. Bohemoslov. 10: 51–64. Available from http://mollusca. (accessed October 2011) [in Czech]Google Scholar
  31. Horáčková, J., V. Ložek and L. Juřičková. 2011b. Měkkýši v nivě Milešovského potoka [Molluscs of the Milešovský potok floodplain (Northwest Bohemia, Czech Republic)]. Malacol. Bohemoslov. 10: 24–34. Available from (accessed June 2011) [in Czech]Google Scholar
  32. Horsá, M. 2000. Měkkýši (Mollusca) navrhované NPR Oderský luh v CHKO Poodří (Česká republika) [The molluscs of the Oderský Floodplain Forest proposed National Nature Reserve in the Poodří Protected Landscape Area (Czech Republic)]. Čas. Slez. Muz. Opava (A) 49: 183–187. [in Czech]Google Scholar
  33. Horsák M. 2006. Mollusc community patterns and species response curves along a mineral richness gradient: a case study in fens. J. Biogeogr. 33: 98–107.CrossRefGoogle Scholar
  34. Horsá, M. and N. Cernohorsky 2008. Mollusc diversity patterns in Central European fens: hotspots and conservation priorities. J. Biogeogr. 35: 1215–1225.CrossRefGoogle Scholar
  35. Horsá, M. and M. Hájek 2003. Composition and species richness of mollusc communities in realtion to vegetation and water chemistry in the Western Carpathian spring fens: the poor-rich gradient. J. Mollusc. Stud. 69: 349–357.CrossRefGoogle Scholar
  36. Horsá, M., M. Hájek, L. Tichý and L. Juřičková. 2007a. Plant indicator values as a tool for land mollusc autecology assessment. Acta Oecol. 32: 161–171.CrossRefGoogle Scholar
  37. Horsá, M., M. Hájek, D. Dítě & L. Tichý. 2007b. Modern distribution patterns of snails and plants in the Western Carpathian spring fens: is it a result of historical development? J. Mollusc. Stud. 73: 53–60.Google Scholar
  38. Horsá, M., L. Juřičková, L. Beran, T. Čejka and L. Dvořák. 2010a. Komentovaný seznam měkkýšů zjištěných ve volné přírodě České a Slovenské republiky. [Annotated list of mollusc species recorded outdoors in the Czech and Slovak Republics]. Malacol. Bohemoslov. 9, Suppl. 1: 1–37. Available from http://mollusca. (accessed November 2010) [in Czech]Google Scholar
  39. Horsá, M., M. Chytrý, J. Danihelka, M. Kočí, S. Kubešová, Z. Lososová, Z. Otýpková & L. Tichý. 2010b. Snail faunas in the Southern Ural forests and their relations to vegetation: an analogue of the Early Holocene assemblages of Central Europe? J. Mollusc. Stud. 76: 1–10.Google Scholar
  40. Horsá, M., M. Chytrý and I. Axmanová. 2013. Exceptionally poor land snail fauna of central Yakutia (NE Russia): climatic and habitat determinants of species richness. Polar. Biol. 36: 185–191.CrossRefGoogle Scholar
  41. Hylander, K., C. Nilsson, B.G. Jonssona and T. Göthner. 2005. Differences in habitat quality explain nestedness in a land snail metacommunity. Oikos 108: 351–361.CrossRefGoogle Scholar
  42. Ilg, C., F. Foeckler, O. Deichner and K. Henle. 2009. Extreme flood events favour floodplain mollusc diversity. Hydrobiologia 621: 63–73.CrossRefGoogle Scholar
  43. Jiráň, L. and N. Venclová. (eds.) 2007–2008. Archeologie pravěkých Čech, 18 [Archaeology of the prehistoric Bohemia, 1–8]. Archeologický ústav AV ČR v.v.i., Prague. [in Czech]Google Scholar
  44. Juřičková, L., M. Horsá, R. Cameron, K. Hylander, A. Míkovcová, J. Hlaváč & J. Rohovec. 2008. Land snail distribution patterns within a site: the role of different calcium sources. Eur. J. Soil Biol. 44: 172–179.Google Scholar
  45. Juřičková, L., J. Horáčková, V. Ložek & M. Horsák. 2013. Impoverishment of recent floodplain forest mollusc fauna in the lower Ohře River (Czech Republic) as a result of prehistoric human impact. Boreas. 10.1111/bor.12006. ISSN 0300–9483.Google Scholar
  46. Kappes, H., R. Lay and W. Topp. 2007. Changes in different trophic levels of litter-dwelling macrofauna associated with giant knotweed invasion. Ecosystems 10: 734–744.CrossRefGoogle Scholar
  47. Kirby, K.J. and C. Watkins. 1998. The Ecological History of European Forests. CAB International, Wallingford.Google Scholar
  48. Labaune, C. and F. Magnin. 2001. Land snail communities in Mediterranean upland grassland: the relative importance of four sets of environmental and spatial variables. J. Mollusc. Stud. 67: 463–474.CrossRefGoogle Scholar
  49. Legendre, P. and E.D. Gallagher. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lespez, L., M. Clet-Pellerin, N. Limondin-Louzouet, J-F. Pastre, M. Fontugne and C. Marcigny. 2008. Fluvial system evolution and environmental changes during the Holocene in the Mue valley (Western France). Geomorphology 98: 55–70.CrossRefGoogle Scholar
  51. Ložek, V. 1947. Měkkýši dolního Povltaví [Mollusca of the Vltava River down-stream]. ČNM 2: 135–148. [in Czech]Google Scholar
  52. Ložek, V. 1964. Quartärmollusken der Tschechoslowakei. Rozpravy Ústředního ústavu geologického, Prague.Google Scholar
  53. Ložek, V. 1976. Měkkýší fauna potoční nivy pod Kuzovem u Třebívlic [Molluscan fauna of the alluvium under Kuzov near Třebívlice]. Severočeskou přírodou 7: 1–14. [in Czech]Google Scholar
  54. Ložek, V. 1989. Postglacial development of Bohemian river valleys in the light of malacology. In: A. Ikinger (ed.), Festschrift Wolfgang Schirmer. Geschichte aus der Erde. GeoArcheoRhein 2., MünsterGoogle Scholar
  55. Ložek, V. 2005. Holocene malacofauna from Řisuty and its significance for the environmental history of the north-west Bohemian forest steppe area. Severočeskou přírodou 36/37: 11–22.Google Scholar
  56. Machar, I. 2008. Historical development of floodplain forests in the Upper Moravian Vale (Vrapač National Nature Reserve, Czech Republic). J. For. Sci. 54: 426–437.CrossRefGoogle Scholar
  57. Martin, K. and M. Sommer. 2004a. Relationships between land snail assemblage patterns and soil properties in temperate-humid forest ecosystems. J. Biogeogr. 31: 531–545.CrossRefGoogle Scholar
  58. Martin, K. and M. Sommer. 2004b. Effects of soil properties and land management on the structure of grassland snail assemblages in SW Germany. Pedobiologia 48: 193–203.CrossRefGoogle Scholar
  59. Millar, A.J. and S. Waite. 1999. Molluscs in coppice woodland. J. Conchol. 36: 25–48.Google Scholar
  60. Myšá, J. and J. Horáčková. 2011. Malakofauna údolí Tiché Orlice [Mollusc fauna of the Tichá Orlice River valley]. Malacol. Bohemoslov. 10: 38–44. Available from (accessed June 2011) [in Czech]Google Scholar
  61. Myšá, J. and M. Horsák. 2011. Floodplain corridor and slope effects on land mollusc distribution patterns in a riverine valley. Acta Oecol. 37: 146–154.CrossRefGoogle Scholar
  62. Obrdlí, P., G. Falkner and E. Castella. 1995. Biodiversity of Gastropoda in European floodplains. Archiv Hydrobiol. Suppl. 101: 339–356.Google Scholar
  63. Oksanen, J., F.G. Blanchet, R. Kindt, P. Legendre, P.R. Minchin, R.B. O’Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens and H. Wagner. 2012. vegan: Community Ecology Package. R package version 2.0-5. Scholar
  64. Ondina, P., J. Hermida, A. Outeiro and S. Mato. 2004. Relationships between terrestrial gastropod distribution and soil properties in Galicia (NW Spain). Appl. Soil Ecol. 26: 1–9.CrossRefGoogle Scholar
  65. Ondina, P., S. Mato, J. Hermida and A. Outeiro. 1998. Importance of soil exchangeable cations and aluminium content on land snail distribution. Appl. Soil Ecol. 9: 229–232.CrossRefGoogle Scholar
  66. Pansu, M. and J. Gautheyrou. 2006. Handbook of soil analysis: mineralogical, organic and inorganic methods. Springer, Berlin-Heidelberg-New York.CrossRefGoogle Scholar
  67. Peterson, D.L. and G.L. Rolfe. 1982. Nutrient dynamics and decomposition of litterfall in floodplain and upland forests of Central Illinois. Forest Science 28: 667–681.Google Scholar
  68. Pišú, P. and T. Čejka. 2000. Mäkkýše ukazujú, ako vznikal lužný les [Molluscs indicate how the floodplain forest formed]. Živa 2: 80–83. [in Slovak]Google Scholar
  69. Pišú, P. and T. Čejka. 2002. Historical development of floodplain site using Mollusca and cartographic evidence. Ekológia 21: 378–396.Google Scholar
  70. Pokryszko, B.M. 1993. Fen malacocenoses in Dovrefjell (S. Norway). Fauna Norv. Ser. A. 14: 27–38.Google Scholar
  71. Prach, K., J. Jeník and A.R.G. Large (eds.). 1996. Floodplain Ecology and Management. The Lužnice River in the Třeboň Biosphere Reserve, Central Europe. SPB Academic Publ., Amsterdam.Google Scholar
  72. R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, URL Scholar
  73. Rollo, C.D. 1991. Endogenous and exogenous regulation of activity in Deroceras reticulatum, a weather-sensitive terrestrial slug. Malacologia 33: 199–220.Google Scholar
  74. Schaffers, A.P. and K.V. Sýkora. 2000. Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: composition with field measurements. J. Veg. Sci. 11: 225–244.CrossRefGoogle Scholar
  75. Schnitzler, A. 1994. European alluvial hardwood forests of large floodplains. J. Biogeogr. 14: 97–117.Google Scholar
  76. Schnitzler, A., B.W. Hale and E. Alsum. 2005. Biodiversity of floodplain forests in Europe and eastern North America: a comparative study of the Rhine and Mississippi Valleys. Biodivers. Conserv. 14: 97–114.CrossRefGoogle Scholar
  77. Sólymos, P., Z. Kemencei, B. Páll-Gergely, R. Farkas, F. Vilisics and E. Homung. 2009. Does shell accumulation matter in micro-scale land snail surveys? Malacologia 51: 389–393.CrossRefGoogle Scholar
  78. Smolíková, L. and V. Ložek. 1978. Die nacheiszeitlichen Bodenabfolgen von Poplze und Štětí als Beleg der Boden- und Landschaftsentwicklung im böhmischen Tschernosemgebiet. In: Beitr. zur Quartär und Landschaftsforsch. Festschrifte zum 60. Geburgstag von J. Fink. Verlag F. Hirt, Wien. pp. 531–549.Google Scholar
  79. Sulikowska-Drozd, A. and M. Horsák. 2007. Woodland mollusc communities along environmental gradients in the East Carpathians. Biologia 62: 201–209.CrossRefGoogle Scholar
  80. Tichý, L. 2002. JUICE; software for vegetation classification. J. Veg. Sci. 13: 451–453.CrossRefGoogle Scholar
  81. van der Maarel, N. 1979. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39: 97–114.CrossRefGoogle Scholar
  82. Vašátko, J., E. Wohlgemuth and M. Horsák. 2002. Nivní malakocenózy v povodí dolní Olšavy. Sborník Přírod. klubu v Uh. Hradišti 7: 77–88. [in Czech]Google Scholar
  83. Wäreborn, I. 1969. Land molluscs and their environments in an oligotrophic area in southern Sweden. Oikos 20: 461–479.CrossRefGoogle Scholar
  84. Wäreborn, I. 1970. Environmental factors influencing the distribution of land molluscs of an oligotrophic area in southern Sweden. Oikos 21: 285–291.CrossRefGoogle Scholar
  85. Wäreborn, I. 1979. Reproduction of two species of land snails in relation to calcium salts in foerna layer. Malacologia 18: 177–180.Google Scholar
  86. Wood, S.N. 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. (B) 73: 3–36.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Ecology, Faculty of ScienceCharles University in PraguePragueCzech Republic
  2. 2.Department of Zoology, Faculty of ScienceCharles University in PraguePragueCzech Republic
  3. 3.Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic

Personalised recommendations