Plant assemblages respond sensitively to aluminium solubility in acid soils

Abstract

Aluminium as a growth limiting factor has been recognized for many years. At high concentrations, aluminium (Al) ions reduce nutrient availability in soils, harm plant cells and thus inhibit plant growth. In addition, Al concentration may be a major factor filtering species composition on acid soils in favour of Al-resistant plants. In this study we analyse species responses and turnover along soil pH and Al gradients and we attempt to interpret the results with respect to the recognised aluminium solubility patterns. Plant community and soil data collected from mesophilous and acidophilous submontane broad-leaved forests of Western Slovakia were used for this purpose. Topsoil horizons were analysed for soil reaction (pH), organic carbon and extractable total aluminium. Species responses to the Al measurements were analysed and tested using CCA and the Huisman-Olff-Fresco (HOF) model. We calculated species turnover by accumulating the first derivatives of all HOF response curves, and interpreted them with respect to the Al solubility pattern observed in the soil dataset. We also performed a bioindication experiment to test how a species assemblage indicates the aluminium gradient. In total, 81% of species shows a significant response to the soil Al gradient. We identified that a rapid retreat of many species and, in consequence, high compositional turnover (ecotone) corresponded with a discontinuity in Al solubility observed at 130 mg Al kg−1 (pH 3.8). Here, the exchangeable Al became increasingly under-saturated with respect to the equilibrium attained at higher pH. This discontinuity was also visible in the bioindication experiment, where the prediction algorithm operated better at the acidic end of the gradient. The results indicate that the studied plant assemblages respond sensitively to soil Al solubility. Changes in aluminium solubility in soils correspond with ecotone between adjacent types of vegetation.

Abbreviations

HOF:

Huisman-Olff-Fresco model

References

  1. Abedi, M., M. Bartelheimer and P. Poschlod. 2013. Aluminium toxic effects on seedling root survival affect plant composition along soil reaction gradients – a case study in dry sandy grasslands. J. Veg. Sci. 24: 1074–1085.

    Article  Google Scholar 

  2. Austin, M.P., A.O. Nicholls, M.D. Doherty and J.A. Meyers. 1994. Determining species response functions to an environmental gradient by means of a β-function. J. Veg. Sci. 5: 215–228.

    Article  Google Scholar 

  3. Austin, M.P. 1990. Community theory and competition in vegetation. In: J.B. Grace and D. Tilman (eds.), Perspectives on Plant Competition. Academic Press, San Diego. pp. 215–238.

  4. Balkovič, J., J. Kollá, G. Čemanová and V. Šimonovič. 2010. Indicating soil acidity using vegetation relevés in spatially limited areas – case study from the Považský Inovec, Slovakia. Folia Geobot. 45: 253–277.

    Article  Google Scholar 

  5. Berggren, D. and J. Mulder. 1995. The role of organic matter in controlling solubility in acidic mineral soil horizons. Geochim. Cosmochim. Ac. 59: 4167–4180.

    CAS  Article  Google Scholar 

  6. Birks, H.J.B., J.M. Line, S. Juggins, A.C. Stevenson and C.J.F. ter Braak. 1990. Diatoms and pH reconstruction. Philos. Trans. Ser. B 327: 263–278.

  7. Boudot, J.P., T. Becquer, D. Merler and J. Rouiller. 1994. Aluminium toxicity in declining forests: a general overview with a seasonal assessment in a silver fir forest in the Vosges mountains (France). Ann. Sci. Forest. 51: 27–51.

    Article  Google Scholar 

  8. Braun-Blanquet, J. 1964. Pflanzensoziologie. Grundzüge der Vegetationskunde. Ed. 3. Springer Verlag, Wien.

    Google Scholar 

  9. Conyers, M.K., G.J. Poile and B.R. Cullis. 1991. Lime responses by barley as related to available soil aluminium and manganese.

  10. Aust. J. Agr. Res. 42: 379–390.

  11. Cronan, C.S. and D.F. Grigal. 1995. Use of calcium/aluminum ratios as indicators of stress in forest ecosystems. J. Environ. Qual. 24: 209–226.

    CAS  Article  Google Scholar 

  12. Dlapa, P. 2002. 3-D view of aluminium solubility in acid soil environment. Phytopedon 1: 94–98.

    Google Scholar 

  13. Edmeades, D.C., C.E. Smart and D.M. Wheeler. 1983. Aluminium toxicity in New Zealand soils: preliminary results on the development of diagnostic criteria. New Zeal. J. Agr. Res. 26:493–501.

    CAS  Article  Google Scholar 

  14. Ellenberg, H., H.E. Weber, R. Düll, W. Wirth, W. Werner and D. Paulißen. 1992. Zeigerwerte von Pflanzen in Mitteleuropa. Ed. 2. Scripta Geobot 18:1–258.

    Google Scholar 

  15. FAO-ISRIC-ISSS 2006. World Reference Base for Soil Resources. World Soil Resources Report 103, FAO, Rome.

  16. Foy, C.D. 1992. Soil chemical factors limiting plant root growth. In: J.L. Hatfield and B.A. Stewart (eds.), Advances in Soil Sciences: Limitations to Plant Root Growth 19. Springer Verlag, New York. pp. 97–149.

  17. Gégout, J.C. and J.C. Pierrat. 1998. L’autécologie des espèces végétales: une approche par régression non paramétrique. Écologie 29: 473–482.

    Google Scholar 

  18. Grauer, U.E. and W.J. Horst. 1991. Comments on the calcium-aluminium balance (CAB). Soil Sci. Soc. Am. J. 55: 897.

    CAS  Article  Google Scholar 

  19. Huisman, J., H. Olff and L.F.M. Fresco. 1993. A hierarchical set of models for species response analysis. J. Veg. Sci. 4: 37–46.

    Article  Google Scholar 

  20. Kanianska, R. and P. Dlapa. 2000. Buffer activity in Cambisol and Podzol induced by acid stress. Rostlinná výroba 46: 133–137.

    Google Scholar 

  21. Lawesson, J.E. and J. Oksanen. 2002. Niche characteristics of Danish woody species as derived from coenoclines. J. Veg. Sci.13: 279–290.

  22. Lindsay, W.L. 2001. Chemical Equilibria in Soils. The Blackburn Press, Caldwell, NJ.

    Google Scholar 

  23. Marhold, K. and F. Hindák (eds.). 1998. Zoznam nižších a vyšších rastlín Slovenska [Checklist of non-vascular and vascular plants of Slovakia]. Veda, Bratislava.

    Google Scholar 

  24. McLean, E.O. 1976. Chemistry of soil aluminum. Commun. Soil Sci. Plan. 7: 619–636.

    CAS  Article  Google Scholar 

  25. Miyake, K. 1916. The toxic action of soluble aluminium salts upon the growth of the rice plant. J. Biol. Chem. 25: 23–28.

    CAS  Google Scholar 

  26. Mulder, J. and A. Stein. 1994. The solubility of aluminum in acidic forest soils: long-term changes due to acidic deposition. Geochim. Cosmochim. Ac. 58: 85–94.

    CAS  Article  Google Scholar 

  27. Neave, I.A., S.M. Davey, J.J. Russell-Smith and R.G. Florence. 1995. The relationship between vegetation patterns and environment on the south coast of New South Wales. Forest Ecol. Manag. 72: 71–80.

    Article  Google Scholar 

  28. Oksanen, J. and P.R. Minchin. 2002a. Continuum theory revisited: what shape are species responses along ecological gradients? Ecol. Model. 157: 119–129.

  29. Oksanen, J. and P.R. Minchin. 2002b. Non-linear maximum likelihood estimation of Beta and HOF response models. Available at: http://cc.oulu.fi/~jarioksa/softhelp/hof3.pdf

  30. Oksanen, J. and T. Tonteri. 1995. Rate of compositional turnover along gradients and total gradient length. J. Veg. Sci. 6: 815–824.

    Article  Google Scholar 

  31. Pakeman, R.J., C.L. Reid, J.J. Lennon and M. Kent. 2008. Possible interactions between environmental factors in determining species optima. J. Veg. Sci. 19: 201–208.

    Article  Google Scholar 

  32. Pauwels, J.S., E. Van Ranst, M. Verloo and Ze. A. Nvondo. 1992.

  33. Manuel de laboratoire de pedologie – Méthodes d’analyses de sols et de plantes, equipement, gestion de stocks de verrerie et de produits chemiques. Publications Agricoles 28, Dschang-Bruxelles.

  34. Peper, J., F. Jansen, D. Pietzsch and M. Manthey. 2011. Patterns of plant species turnover along grazing gradients. J. Veg. Sci. 22: 457–466.

    Article  Google Scholar 

  35. Peppler-Lisbach, C. and M. Kleyer. 2009. Patterns of species richness and turnover along the pH gradient in deciduous forests: testing the continuum hypothesis. J. Veg. Sci. 20: 984–995.

    Article  Google Scholar 

  36. Poschenrieder, C., B. Gunsé, I. Corrales and J. Barceló. 2008. A glance into aluminium toxicity and resistance in plants. Sci. Total Environ. 400: 356–368.

    CAS  Article  Google Scholar 

  37. R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.R-project.org/

  38. Ryan, S.E. and L.S. Porth. 2007. A Tutorial on the Piecewise Regression Approach Applied to Bedload Transport Data. RMRS-GTR-189. Fort Collins, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Available at: http://www.fs.fed.us/rm/pubs/rmrs_gtr189.pdf

  39. Schaffers, A.P. and K.V. Sýkora. 2000. Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J. Veg. Sci. 11: 225–244.

    Article  Google Scholar 

  40. ter Braak, C.J.F. and P. Šmilauer. 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). Ithaca, NY, USA.

    Google Scholar 

  41. ter Braak, C.J.F. and H. van Dam. 1989. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178: 209–223.

    Article  Google Scholar 

  42. Ulrich, B. 1983. Soil acidity and its relations to acid deposition. In: B. Ulrich and J. Pankrath (eds.), Effects of Accumulation of Air Pollutants in Forest Ecosystems. Kluwer Acad. Publ., Dordrecht, Holland. pp. 127–146.

  43. USDA-NRCS-NSSC 1996. Soil Survey Laboratory Methods Manual. Soil Survey Investigation. Report 42. Available at: http://soils.usda.gov/

  44. Walker, S., J.B. Wilson, J.B. Steel, G.L. Rapson, B. Smith, W.M.G. King and Y.H. Cottam. 2003. Properties of ecotones: Evidence from five ecotones objectively determined from a costal vegetation gradient. J. Veg. Sci. 14: 579–590.

    Article  Google Scholar 

  45. Wamelink, G.W.W., P.W. Goedhart, A.H. Malinowska, J.Y. Frissel, R.J.M. Wegman, P.A. Slim and H.F. Van Dobben. 2011. Ecological ranges for the pH and NO3 of syntaxa: a new basis for the estimation of critical loads for acid and nitrogen deposition. J. Veg. Sci. 22: 741–749.

    Article  Google Scholar 

  46. Wamelink, G.W.W., P.W. Goedhart, H.F. Van Dobben and F. Berendse. 2005. Plant species as predictors of soil pH: Replacing expert judgement with measurements. J. Veg. Sci.16: 461–470.

  47. Wesselink, L.G., N. Van Breemen, J. Mulder and P.H. Janssen. 1996. A simple model of soil organic matter complexation to predict the solubility of aluminium in acid forest soils. Eur. J. Soil Sci. 47: 373–384.

    CAS  Article  Google Scholar 

  48. Whittaker, R.H. 1975. Communities and Ecosystems. Ed. 2, Macmillan, New York.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Balković.

Electronic supplementary material

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Balković, J., Kollár, J., Šimonović, V. et al. Plant assemblages respond sensitively to aluminium solubility in acid soils. COMMUNITY ECOLOGY 15, 94–103 (2014). https://doi.org/10.1556/ComEc.15.2014.1.10

Download citation

Keywords

  • Bioindication
  • Broadleaved forests
  • Slovakia
  • Species responses
  • Species turnover rate

Plant nomenclature

  • Marhold and Hindák (1998)