Community Ecology

, Volume 15, Issue 1, pp 94–103 | Cite as

Plant assemblages respond sensitively to aluminium solubility in acid soils

  • J. BalkovićEmail author
  • J. Kollár
  • V. Šimonović
  • H. Žarnovićan


Aluminium as a growth limiting factor has been recognized for many years. At high concentrations, aluminium (Al) ions reduce nutrient availability in soils, harm plant cells and thus inhibit plant growth. In addition, Al concentration may be a major factor filtering species composition on acid soils in favour of Al-resistant plants. In this study we analyse species responses and turnover along soil pH and Al gradients and we attempt to interpret the results with respect to the recognised aluminium solubility patterns. Plant community and soil data collected from mesophilous and acidophilous submontane broad-leaved forests of Western Slovakia were used for this purpose. Topsoil horizons were analysed for soil reaction (pH), organic carbon and extractable total aluminium. Species responses to the Al measurements were analysed and tested using CCA and the Huisman-Olff-Fresco (HOF) model. We calculated species turnover by accumulating the first derivatives of all HOF response curves, and interpreted them with respect to the Al solubility pattern observed in the soil dataset. We also performed a bioindication experiment to test how a species assemblage indicates the aluminium gradient. In total, 81% of species shows a significant response to the soil Al gradient. We identified that a rapid retreat of many species and, in consequence, high compositional turnover (ecotone) corresponded with a discontinuity in Al solubility observed at 130 mg Al kg−1 (pH 3.8). Here, the exchangeable Al became increasingly under-saturated with respect to the equilibrium attained at higher pH. This discontinuity was also visible in the bioindication experiment, where the prediction algorithm operated better at the acidic end of the gradient. The results indicate that the studied plant assemblages respond sensitively to soil Al solubility. Changes in aluminium solubility in soils correspond with ecotone between adjacent types of vegetation.


Bioindication Broadleaved forests Slovakia Species responses Species turnover rate 



Huisman-Olff-Fresco model

Plant nomenclature

Marhold and Hindák (1998) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2014_1501094_MOESM1_ESM.pdf (147 kb)
Supplementary material, approximately 150 KB.


  1. Abedi, M., M. Bartelheimer and P. Poschlod. 2013. Aluminium toxic effects on seedling root survival affect plant composition along soil reaction gradients – a case study in dry sandy grasslands. J. Veg. Sci. 24: 1074–1085.CrossRefGoogle Scholar
  2. Austin, M.P., A.O. Nicholls, M.D. Doherty and J.A. Meyers. 1994. Determining species response functions to an environmental gradient by means of a β-function. J. Veg. Sci. 5: 215–228.CrossRefGoogle Scholar
  3. Austin, M.P. 1990. Community theory and competition in vegetation. In: J.B. Grace and D. Tilman (eds.), Perspectives on Plant Competition. Academic Press, San Diego. pp. 215–238.Google Scholar
  4. Balkovič, J., J. Kollá, G. Čemanová and V. Šimonovič. 2010. Indicating soil acidity using vegetation relevés in spatially limited areas – case study from the Považský Inovec, Slovakia. Folia Geobot. 45: 253–277.CrossRefGoogle Scholar
  5. Berggren, D. and J. Mulder. 1995. The role of organic matter in controlling solubility in acidic mineral soil horizons. Geochim. Cosmochim. Ac. 59: 4167–4180.CrossRefGoogle Scholar
  6. Birks, H.J.B., J.M. Line, S. Juggins, A.C. Stevenson and C.J.F. ter Braak. 1990. Diatoms and pH reconstruction. Philos. Trans. Ser. B 327: 263–278.Google Scholar
  7. Boudot, J.P., T. Becquer, D. Merler and J. Rouiller. 1994. Aluminium toxicity in declining forests: a general overview with a seasonal assessment in a silver fir forest in the Vosges mountains (France). Ann. Sci. Forest. 51: 27–51.CrossRefGoogle Scholar
  8. Braun-Blanquet, J. 1964. Pflanzensoziologie. Grundzüge der Vegetationskunde. Ed. 3. Springer Verlag, Wien.Google Scholar
  9. Conyers, M.K., G.J. Poile and B.R. Cullis. 1991. Lime responses by barley as related to available soil aluminium and manganese.Google Scholar
  10. Aust. J. Agr. Res. 42: 379–390.Google Scholar
  11. Cronan, C.S. and D.F. Grigal. 1995. Use of calcium/aluminum ratios as indicators of stress in forest ecosystems. J. Environ. Qual. 24: 209–226.CrossRefGoogle Scholar
  12. Dlapa, P. 2002. 3-D view of aluminium solubility in acid soil environment. Phytopedon 1: 94–98.Google Scholar
  13. Edmeades, D.C., C.E. Smart and D.M. Wheeler. 1983. Aluminium toxicity in New Zealand soils: preliminary results on the development of diagnostic criteria. New Zeal. J. Agr. Res. 26:493–501.CrossRefGoogle Scholar
  14. Ellenberg, H., H.E. Weber, R. Düll, W. Wirth, W. Werner and D. Paulißen. 1992. Zeigerwerte von Pflanzen in Mitteleuropa. Ed. 2. Scripta Geobot 18:1–258.Google Scholar
  15. FAO-ISRIC-ISSS 2006. World Reference Base for Soil Resources. World Soil Resources Report 103, FAO, Rome.Google Scholar
  16. Foy, C.D. 1992. Soil chemical factors limiting plant root growth. In: J.L. Hatfield and B.A. Stewart (eds.), Advances in Soil Sciences: Limitations to Plant Root Growth 19. Springer Verlag, New York. pp. 97–149.Google Scholar
  17. Gégout, J.C. and J.C. Pierrat. 1998. L’autécologie des espèces végétales: une approche par régression non paramétrique. Écologie 29: 473–482.Google Scholar
  18. Grauer, U.E. and W.J. Horst. 1991. Comments on the calcium-aluminium balance (CAB). Soil Sci. Soc. Am. J. 55: 897.CrossRefGoogle Scholar
  19. Huisman, J., H. Olff and L.F.M. Fresco. 1993. A hierarchical set of models for species response analysis. J. Veg. Sci. 4: 37–46.CrossRefGoogle Scholar
  20. Kanianska, R. and P. Dlapa. 2000. Buffer activity in Cambisol and Podzol induced by acid stress. Rostlinná výroba 46: 133–137.Google Scholar
  21. Lawesson, J.E. and J. Oksanen. 2002. Niche characteristics of Danish woody species as derived from coenoclines. J. Veg. Sci.13: 279–290.Google Scholar
  22. Lindsay, W.L. 2001. Chemical Equilibria in Soils. The Blackburn Press, Caldwell, NJ.Google Scholar
  23. Marhold, K. and F. Hindák (eds.). 1998. Zoznam nižších a vyšších rastlín Slovenska [Checklist of non-vascular and vascular plants of Slovakia]. Veda, Bratislava.Google Scholar
  24. McLean, E.O. 1976. Chemistry of soil aluminum. Commun. Soil Sci. Plan. 7: 619–636.CrossRefGoogle Scholar
  25. Miyake, K. 1916. The toxic action of soluble aluminium salts upon the growth of the rice plant. J. Biol. Chem. 25: 23–28.Google Scholar
  26. Mulder, J. and A. Stein. 1994. The solubility of aluminum in acidic forest soils: long-term changes due to acidic deposition. Geochim. Cosmochim. Ac. 58: 85–94.CrossRefGoogle Scholar
  27. Neave, I.A., S.M. Davey, J.J. Russell-Smith and R.G. Florence. 1995. The relationship between vegetation patterns and environment on the south coast of New South Wales. Forest Ecol. Manag. 72: 71–80.CrossRefGoogle Scholar
  28. Oksanen, J. and P.R. Minchin. 2002a. Continuum theory revisited: what shape are species responses along ecological gradients? Ecol. Model. 157: 119–129.Google Scholar
  29. Oksanen, J. and P.R. Minchin. 2002b. Non-linear maximum likelihood estimation of Beta and HOF response models. Available at: Scholar
  30. Oksanen, J. and T. Tonteri. 1995. Rate of compositional turnover along gradients and total gradient length. J. Veg. Sci. 6: 815–824.CrossRefGoogle Scholar
  31. Pakeman, R.J., C.L. Reid, J.J. Lennon and M. Kent. 2008. Possible interactions between environmental factors in determining species optima. J. Veg. Sci. 19: 201–208.CrossRefGoogle Scholar
  32. Pauwels, J.S., E. Van Ranst, M. Verloo and Ze. A. Nvondo. 1992.Google Scholar
  33. Manuel de laboratoire de pedologie – Méthodes d’analyses de sols et de plantes, equipement, gestion de stocks de verrerie et de produits chemiques. Publications Agricoles 28, Dschang-Bruxelles.Google Scholar
  34. Peper, J., F. Jansen, D. Pietzsch and M. Manthey. 2011. Patterns of plant species turnover along grazing gradients. J. Veg. Sci. 22: 457–466.CrossRefGoogle Scholar
  35. Peppler-Lisbach, C. and M. Kleyer. 2009. Patterns of species richness and turnover along the pH gradient in deciduous forests: testing the continuum hypothesis. J. Veg. Sci. 20: 984–995.CrossRefGoogle Scholar
  36. Poschenrieder, C., B. Gunsé, I. Corrales and J. Barceló. 2008. A glance into aluminium toxicity and resistance in plants. Sci. Total Environ. 400: 356–368.CrossRefGoogle Scholar
  37. R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: Scholar
  38. Ryan, S.E. and L.S. Porth. 2007. A Tutorial on the Piecewise Regression Approach Applied to Bedload Transport Data. RMRS-GTR-189. Fort Collins, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Available at:
  39. Schaffers, A.P. and K.V. Sýkora. 2000. Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J. Veg. Sci. 11: 225–244.CrossRefGoogle Scholar
  40. ter Braak, C.J.F. and P. Šmilauer. 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). Ithaca, NY, USA.Google Scholar
  41. ter Braak, C.J.F. and H. van Dam. 1989. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178: 209–223.CrossRefGoogle Scholar
  42. Ulrich, B. 1983. Soil acidity and its relations to acid deposition. In: B. Ulrich and J. Pankrath (eds.), Effects of Accumulation of Air Pollutants in Forest Ecosystems. Kluwer Acad. Publ., Dordrecht, Holland. pp. 127–146.Google Scholar
  43. USDA-NRCS-NSSC 1996. Soil Survey Laboratory Methods Manual. Soil Survey Investigation. Report 42. Available at: Scholar
  44. Walker, S., J.B. Wilson, J.B. Steel, G.L. Rapson, B. Smith, W.M.G. King and Y.H. Cottam. 2003. Properties of ecotones: Evidence from five ecotones objectively determined from a costal vegetation gradient. J. Veg. Sci. 14: 579–590.CrossRefGoogle Scholar
  45. Wamelink, G.W.W., P.W. Goedhart, A.H. Malinowska, J.Y. Frissel, R.J.M. Wegman, P.A. Slim and H.F. Van Dobben. 2011. Ecological ranges for the pH and NO3 of syntaxa: a new basis for the estimation of critical loads for acid and nitrogen deposition. J. Veg. Sci. 22: 741–749.CrossRefGoogle Scholar
  46. Wamelink, G.W.W., P.W. Goedhart, H.F. Van Dobben and F. Berendse. 2005. Plant species as predictors of soil pH: Replacing expert judgement with measurements. J. Veg. Sci.16: 461–470.Google Scholar
  47. Wesselink, L.G., N. Van Breemen, J. Mulder and P.H. Janssen. 1996. A simple model of soil organic matter complexation to predict the solubility of aluminium in acid forest soils. Eur. J. Soil Sci. 47: 373–384.CrossRefGoogle Scholar
  48. Whittaker, R.H. 1975. Communities and Ecosystems. Ed. 2, Macmillan, New York.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • J. Balković
    • 1
    • 2
    Email author
  • J. Kollár
    • 3
  • V. Šimonović
    • 3
  • H. Žarnovićan
    • 4
  1. 1.International Institute for Applied Systems Analysis (IIASA)Ecosystem Services and Management ProgramLaxenburgAustria
  2. 2.Department of Soil Science, Faculty of Natural SciencesComenius University in BratislavaMlynská dolinaSlovak Republic
  3. 3.Institute of Landscape EcologySlovak Academy of SciencesBratislavaSlovak Republic
  4. 4.Department of Landscape Ecology, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovak Republic

Personalised recommendations