Community Ecology

, Volume 14, Issue 2, pp 219–230 | Cite as

Detection of long-term landscape changes and trajectories in a Pannonian sand region: comparing land-cover and habitat-based approaches at two spatial scales

  • M. BiróEmail author
  • K. Szitár
  • F. Horváth
  • I. Bagi
  • Zs. Molnár


A key driver of biodiversity loss is human landscape transformation. Change detection and trajectory analysis are frequently applied methods for studying landscape change. We studied to what degree habitat-specific change detection and trajectory analysis provide different information on landscape change compared to the analysis with land-cover statistics. Our research was carried out at two spatial scales (regional, 1800 km2, 360 random points; local, 23 km2, polygon-based maps) in the Kiskunság, Hungary. Spatio-temporal databases were prepared using historical maps, aerial photos and satellite images from 1783, 1883, 1954, and 2009. Local expert knowledge of landscape history and recent vegetation was used during the historical reconstructions. We found large differences at both scales between land-cover based and habitat-specific analyses. Habitat-specific change detection revealed that grassland loss was not continuous in the different habitats, as land-cover based analysis implied. Ploughing affected open sand grasslands and sand steppes differently in the periods studied. It was only apparent from the habitat-specific analyses that from the grasslands only mesotrophic and Molinia meadows were relatively constant, up until the 1950s. The gradual increase in forest area revealed by land-cover CHD analyses was split into natural and anthropogenic processes by habitat-specific analyses. Habitat specific trajectory analysis also revealed ecologically important historical differences between habitats. Afforestation affected especially the open sand grasslands, whereas wetland habitats were relatively stable. The most important trajectory was the one in which closed sand steppes were ploughed during the 19th century, and remained arable fields until present. Fifty percent of the regional trajectories of 18th century open sand grasslands terminated in tree plantations at present, though 82% of the current open sand grasslands of the local site can be regarded as ancient. We concluded that dividing land-cover categories into finer habitat categories offered an opportunity for a more precise historical analysis of key habitats, and could reveal important ecological processes that cannot be reconstructed with land-cover based analyses. It also highlighted habitat-specific processes making natural and social drivers better interpretable. Information on the diversity of habitat-histories may serve as a basis for spatially more explicit conservation management.


Change detection analysis Habitat change Habitat continuity Land-cover change Regional scale 



Change detection


Digital elevation model


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agnoletti, M. 2007. The degradation of traditional landscape in a mountain area of Tuscany during the 19th and 20th centuries: implications for biodiversity and sustainable management. Forest Ecol. Manag. 249: 5–17.CrossRefGoogle Scholar
  2. Anand, M. and G.W. Heil. 2000. Analysis of a recovery process: Dwingelose Heide revisited. Community Ecol. 1: 65–72.CrossRefGoogle Scholar
  3. Anand, M. and L. Orloci. 1997. Chaotic dynamics in a multispecies community. Environ. Ecol. Stat. 4: 337–344.CrossRefGoogle Scholar
  4. Antrop, M. 2005. Why landscapes of the past are important for the future? Landscape Urban Plan. 70: 21–34.CrossRefGoogle Scholar
  5. Arce-Nazario, J.A. 2007. Human landscapes have complex trajectories: reconstructing Peruvian Amazon landscape history from 1948 to 2005. Landscape Ecol. 22: 89–101.CrossRefGoogle Scholar
  6. Bagi I. 2000. NBmR tájléptékű élőhely-monitorozás a “T5x5_099 Kiskunság/Fülöpháza” mintaterület élőhely-térképezése és leírása. Kutatási jelentés. (Habitat mapping and description of the 5x5 km sample plot “T5x5_099 Kiskunság/ Fülöpháza” in the Hungarian Biodiversity Monitoring Project. Report in Hungarian). KvVM TvH, MTA ÖBKI, Vácrátót.Google Scholar
  7. Bagi, I. 1988. The role of water management in the degradation processes of halophilic vegetation in Hungary. Environ. Conserv. 15: 359–362.CrossRefGoogle Scholar
  8. Bartha, S., Zs. Molnár and G. Fekete. 2008. Patch dynamics in sand grasslands: connecting primary and secondary succession. In: E. Kovács-Láng, E. Molnár, Gy. Kröel-Dulay and S. Barabás (eds.), The KISKUN LTER, Long-term Ecological Research in the Kiskunság, Hungary. Institute of Ecology and Botany, H.A.S., Vácrátót. pp. 37–40.Google Scholar
  9. Biró, M. 2006. Történeti vegetációrekonstrukciók a térképek botanikai tartalmának foltonkénti gazdagításával (Reconstructions of historical vegetation by the method of „teaching” maps). Tájökológiai Lapok 4(2): 357–384. In Hungarian.Google Scholar
  10. Biró, M. 2008. A Duna-Tisza köze fásszárú vegetációjának átalakulása a 18. század óta, különös tekintettel a száraz homok-területekre. (Changes in woody vegetation of the Duna-Tisza köze since the 18th century with special emphasis on sand dunes). In: Gy. Kröel-Dulay, T. Kalapos and A. Mojzes (eds.), Talaj-vegetáció-klíma kölcsönhatások. MTA Ökológiai és Botanikai Kutatóintézete, Vácrátót. pp. 23–38. In Hungarian.Google Scholar
  11. Biró, M. and Zs. Molnár. 1998. A Duna-Tisza köze homokbuckásainak tájtípusai, azok kiterjedése, növényzete és tájtörténete a 18. századtól (Vegetation and land-use history in the sand dunes of the Duna-Tisza köze from the 18th century and the mapping of landscape types of the late 18th century). Történeti Földrajzi Füzetek 5: 1– 34. In Hungarian with shortened English version.Google Scholar
  12. Biró, M., A. Révész, F. Horváth and Zs Molnár. 2006. Point based mapping of the actual vegetation of a large area in Hungary – description, usability and limitation of the method. Acta Bot. Hung. 48: 247–269.CrossRefGoogle Scholar
  13. Biró, M., A. Révész, Zs. Molnár and F. Horváth. 2007. Regional habitat pattern of the Danube-Tisza interfluve in Hungary I. The landscape structure and habitat pattern; the fen and alkali vegetation. Acta Bot. Hung. 49(3–4): 267–303.CrossRefGoogle Scholar
  14. Biró, M., B. Czúcz, F. Horváth, A. Révész, B. Csatári and Zs. Molnár. 2013. Drivers of grassland loss in Hungary during the post-socialist transformation (1987–1999). Landscape Ecol. 28(5) 789–803.CrossRefGoogle Scholar
  15. Bölöni J., Zs. Molnár and A. Kun. 2011. Magyarország élőhelyei. A hazai vegetációtípusok leírása és határozója. (Habitats of Hungary. A description and guide to Hungarian vegetation) MTA ÖBKI, Vácrátót. In Hungarian.Google Scholar
  16. Bölöni, J., Zs. Molnár, E. Illyés and A. Kun. 2007. A new habitat classification and manual for standardized habitat mapping. Annali di Botanica nouva serie. 7: 105–126.Google Scholar
  17. Bürgi, M., A.M. Hersperger and N. Schneeberger. 2004. Driving forces of landscape change – current and new directions. Landscape Ecol. 19: 857–868.CrossRefGoogle Scholar
  18. Cale, W.G., G.M. Henebry and J.A. Yeakley. 1989. Inferring process from pattern in natural communities. BioScience 39(9): 600–605.CrossRefGoogle Scholar
  19. Cousins, S.A.O. 2001. Analysis of land-cover transitions based on 17th and 18th century cadastral maps and aerial photographs. Landscape Ecol. 16: 41–54.CrossRefGoogle Scholar
  20. Cousins, S.A.O. and O. Eriksson. 2002. The influence of management history and habitat on plant species richness in a rural hemiboreal landscape, Sweden. Landscape Ecol. 17: 517–529.CrossRefGoogle Scholar
  21. Csatári, B. and J. Farkas. 2008. Agrarian and rural development in Hungary, 1990–2005, In: Bańsky, J., M. Bednarek (eds.), Contemporary Changes of Agriculture in East-Central Europe. Polish Academy of Sciences Institute of Geography and Spatial Organization, Polish Geographical Society, Warsaw. (Rural Studies 15), pp. 147–164.Google Scholar
  22. Csecserits, A., B. Czúcz, M. Halassy, G. Kröel-Dulay, T. Rédei, R. Szabó, K. Szitár and K. TöröK. 2011. Regeneration of sandy old-fields in the forest steppe region of Hungary. Plant Biosyst. 145: 715–729.CrossRefGoogle Scholar
  23. Cserhalmi, D., J. Nagy, D. Kristóf and D. Neidert. 2011. Changes in a wetland ecosystem: a vegetation reconstruction study based on historical panchromatic aerial photographs and succession patterns. Folia Geobot. 46(4): 351–371.CrossRefGoogle Scholar
  24. Czúcz, B., A. Csecserits, Z. Botta-Dukát, G. Kröel-Dulay, R. Szabó, F. Horváth and Zs. Molnár. 2011. An indicator framework for the climatic adaptive capacity of natural ecosystems. J. Veg. Sci. 22(4): 711–725.CrossRefGoogle Scholar
  25. Eremiášová, R. and H. Skokanová. 2009. Land use changes (recorded in old maps) and delimitation of the most stable areas from the perspective of land use in the Kašperské Hory region. Landscape Ecol. 88(1): 20–34.Google Scholar
  26. Fischer, J. and D.B. Lindenmayer. 2007. Landscape modification and habitat fragmentation: a synthesis. Global Ecol. Biogeogr. 16: 265–280.CrossRefGoogle Scholar
  27. Foley, J.A., R. DeFries, G.P. Asner, C. Barford, G. Bonan, S.R. Carpenter and P.K. Snyder. 2005. Global consequences of land use. Science 309(5734): 570–574.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Frondoni, R., B. Mollo and G. Capotorti. 2011. A landscape analysis of land cover change in the Municipality of Rome (Italy): Spatio-temporal characteristics and ecological implications of land cover transitions from 1954 to 2001. Landscape Urban Plan. 100(1–2): 117–128.CrossRefGoogle Scholar
  29. Gillanders, S.N., N.C. Coops, M.A. Wulder, S.E. Gergel and T. Nelson. 2008. Multitemporal remote sensing of landscape dynamics and pattern change: describing natural and anthropogenic trends. Prog. Phys. Geog. 32: 503–528.CrossRefGoogle Scholar
  30. Hatna, E. and M.M. Bakker. 2011. Abandonment and expansion of arable land in Europe. Ecosystems 14: 720–731.CrossRefGoogle Scholar
  31. Hooftman, D.A.P. and J.M. Bullock. 2012. Mapping to inform conservation: A case study of changes in semi-natural habitats and their connectivity over 70 years. Biol. Conserv. 145(1): 30–38.CrossRefGoogle Scholar
  32. Houet, T., P.H. Verburg and T.R. Loveland. 2010. Monitoring and modelling landscape dynamics. Landscape Ecol. 25(2): 163–167.CrossRefGoogle Scholar
  33. Ichikawa, K., N. Okubo, S. Okubo and K. Takeuchi. 2006. Transition of the satoyama landscape in the urban fringe of the Tokyo metropolitan area from 1880 to 2001. Landscape Urban Plan. 78: 398–410.CrossRefGoogle Scholar
  34. Käyhkö, N. and H. Skånes. 2008. Retrospective land cover/land use change trajectories as drivers behind the local distribution and abundance patterns of oaks in south-western Finland. Landscape Urban Plan. 88(1): 12–22.CrossRefGoogle Scholar
  35. Käyhkö, N. and H. Skånes. 2006. Change trajectories and key biotopes - Assessing landscape dynamics and sustainability. Landscape Urban Plan. 75 (3–4): 300–321.CrossRefGoogle Scholar
  36. Kovács-Láng, E., Gy. Kröel-Dulay, M. Kertész, G. Fekete, S. Bartha, J. Mika, I. Dobi-Wantuch, T. Rédei, K. Rajkai and I. Hahn. 2000. Changes in the composition of sand grasslands along a climatic gradient in Hungary and implications for climate change. Phytocoenologia 30(3–4): 385–407.CrossRefGoogle Scholar
  37. Kowalska. A. 2012. Changes in the area of protected plant communities in the middle Vistula river valley in the second half of the 20th century. Polish J. Ecol. 60(1): 19–30.Google Scholar
  38. Lindborg, R. and O. Eriksson. 2004. Historical landscape connectivity affects present plant species diversity. Ecology 85(7): 1840–1845.CrossRefGoogle Scholar
  39. Mádl-Szõnyi, J., and J. Tóth. 2009. A hydrogeological type section for the Duna-Tisza Interfluve, Hungary. Hydrogeology Journal 17(4): 961–980.CrossRefGoogle Scholar
  40. Mikusinska, A., B. Zawadzka, T. Samojlik, B. Jędrzejewska and G. Mikusiński. 2013. Quantifying landscape change during the last two centuries in Białowiez˙a Primeval Forest. Appl. Veg. Sci. 16: 217–226.CrossRefGoogle Scholar
  41. Molnár, Zs. (ed.) 2003. A Kiskunság száraz homoki növényzete (Sanddunes in Hungary, Kiskunság). Természetbúvár Alapítvány Kiadó, Budapest. In HungarianGoogle Scholar
  42. Molnár, Zs., M. Biró, S. Bartha and G. Fekete. 2012. Past Trends, Present State and Future Prospects of Hungarian Forest-Steppes. In: M.J.A. Werger and M.A. van Staalduinen (eds.), Eurasian Steppes. Ecological Problems and Livelihoods in a Changing World. Springer, Dordrecht, Heidelberg, New York, London. pp. 209–252.CrossRefGoogle Scholar
  43. Molnár, Zs., S. Bartha, T. Seregélyes, E. Illyés, G. Tímár, F. Horváth, A. Révész, A. Kun, Z. Botta-Dukát, J. Bölöni, M. Biró, L. Bodonczi, J.Á. Deák, P. Fogarasi, A. Horváth, I. Isépy, L. Karas, F. Kecskés, Cs. Molnár, Ortmann-né A. Ajkai and S. Rév. 2007. A grid-based, satellite-image supported, multi-attributed vegetation mapping method (MÉTA). Folia Geobot. 42: 225–247.CrossRefGoogle Scholar
  44. Nainggolan, D., J. de Vente, C. Boix-Fayos, M. Termansen, K. Hubacek and M.S. Reed. 2012. Afforestation, agricultural abandonment and intensification: Competing trajectories in semiarid Mediterranean agro-ecosystems, Agr. Ecosyst. Environ. 159: 90–104.CrossRefGoogle Scholar
  45. Ojeda-Revah, L., G. Bocco, E. Ezcurra and I. Espejel. 2008. Land-cover/use transitions in the binational Tijuana River watershed during a period of rapid industrialization. Appl. Veg. Sci. 11: 107–116.CrossRefGoogle Scholar
  46. Orczewska, A. 2009. Age and origin of forests in south-western Poland and their importance for ecological studies in man-dominated landscapes. Landscape Res. 34: 559–617.CrossRefGoogle Scholar
  47. Orlóci, L. 2001. Pattern dynamics: an essay concerning principles, techniques, and applications. Community Ecol. 2(1): 1–15.CrossRefGoogle Scholar
  48. Orlóci, L. 2009. Multi-scale trajectory analysis: powerful conceptual tool for understanding ecological change. Frontiers of Biology in China. 4(2): 158–179.CrossRefGoogle Scholar
  49. Orlóci, L., M. Anand, and X.S. He. 1993. Markov chain: a realistic model for temporal coenosere. Biometrie-Praximetrie 33: 7–26.Google Scholar
  50. Pickett, S.T.A. and P.S. White. 1985. The Ecology of Natural Disturbance and Patch Dynamics. Academic Press New York.Google Scholar
  51. Prentice, I. C., A. Bondeau, W. Cramer, S.P. Harrison, T. Hickler, W. Lucht, S. Sitch, B. Smith and M.T. Sykes. 2007. Dynamic global vegetation modeling: quantifying terrestrial ecosystem responses to large-scale environmental change. In: J.G. Canadell, D.D.E. Pataki and L.F. Pitelka (eds.), Terrestrial Ecosystems in a Changing World. Springer, Berlin, Heidelberg. pp. 175–192.CrossRefGoogle Scholar
  52. Rodrigues, P. 2010. Landscape changes in Castro Laboreiro: from farmland abandonment to forest regeneration. MSc Thesis, Faculdade de Ciências da Universidade de Lisboa, Lisboa.Google Scholar
  53. Ruiz, J. and G. Domon. 2009. Analysis of landscape pattern change trajectories within areas of intensive agricultural use: case study in a watershed of southern Quebec, Canada. Landscape Ecol. 24: 419–432.CrossRefGoogle Scholar
  54. Somodi, I., K. Virágh and R. Aszalós. 2004. The effect of the abandonment of grazing on the mosaic of vegetation patches in a temperate grassland area in Hungary. Ecol. Complex. 1(2): 177–189.CrossRefGoogle Scholar
  55. Swetnam, R.D. 2007. Rural land use in England and Wales between 1930 and 1998: Mapping trajectories of change with a high resolution spatio-temporal dataset. Landscape Urban Plan. 81: 91–103.CrossRefGoogle Scholar
  56. Szitár K. 2010. Jelentés a “T5x5_099 Kiskunság/Fülöpháza” NBMR kvadrat 2009–2010. évi újratérképezéséről. Kutatási jelentés. (Report of the remapping and description of the 5x5 km sample plot “T5x5_099 Kiskunság/Fülöpháza” in 2009–2010. Research report, in Hungarian.). KvVM TvH, MTA ÖBKI, Vácrátót.Google Scholar
  57. Szitár, K., K. Török and R. Szabó. 2008. Vegetation composition changes in ex-arable fields following glyphosate application: the role of soil seed bank and timing of seed production. Cereal Res. Commun. 36: 1–4. (Suppl.)Google Scholar
  58. Takács, G. and Zs. Molnár. (eds.) 2009. Habitat mapping. Handbooks of National Biodiversity Monitoring System IX. MTA ÖBKI - KvVM, Vácrátót – Budapest. Scholar
  59. Ujházy, K., J. Fanta, and K. Prach. 2011. Two centuries of vegetation succession in an inland sand dune area, central Netherlands. Appl. Veg. Sci. 14(3): 316–325.CrossRefGoogle Scholar
  60. Veldkamp, A. and E.F. Lambin. 2001. Predicting land-use change. Agric. Ecosyst. Environ. 85: 1–6.CrossRefGoogle Scholar
  61. Verburg, P.H., D.B. van Berkel, A.M. van Doorn, M. van Eupen and H.A.R.M. van den Heiligenberg. 2010. Trajectories of land use change in Europe: a model-based exploration of rural futures. Landscape Ecol. 25:217–232.CrossRefGoogle Scholar
  62. Vitousek, P.M., H.A. Mooney, J. Lubchenco and J. M. Melillo. 1997. Human domination of earth’s ecosystems. Science 277: 494–499.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2013

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • M. Biró
    • 1
    Email author
  • K. Szitár
    • 1
  • F. Horváth
    • 1
  • I. Bagi
    • 2
  • Zs. Molnár
    • 1
  1. 1.Centre for Ecological Research, Hungarian Academy of SciencesInstitute of Ecology and BotanyVácrátótHungary
  2. 2.University of Szeged Department of BiologySzegedHungary

Personalised recommendations