Community Ecology

, Volume 14, Issue 2, pp 208–218 | Cite as

Historical links and new frontiers in the study of forest-atmosphere interactions

  • L. C. R. SilvaEmail author
  • M. Anand


Forest biomes have expanded and contracted in response to past climate fluctuations, but it is not clear how they will respond to human-induced atmospheric change. We provide a review of the literature, describing historical links between biogeographical and atmospheric patterns, comparing characteristics of forest biomes and describing expected changes in climate forcings from observed range shifts. Over the geological history, climate fluctuations prompted changes in forest distribution that, in turn, stabilized the atmosphere. Over the past century, warming-induced stress has caused widespread declines of mature forests, but new forests have expanded into open areas of boreal, tropical and temperate regions. Historically, forest expansion happened at much faster rates in cold than in warm regions. Across biomes, species interactions control the use of limiting resources, regulating community dynamics and expansion rates in response to climate variability. Modern impacts of land use change on the distribution of forest biomes are well understood, but the expansion of new forests and their role in stabilizing the atmosphere are yet to be accounted for in global models. Expansion of tropical and temperate forests would yield a negative climate forcing through increased carbon sequestration and evaporative cooling, but in the boreal region forest expansion could amplify climate warming due to changes in albedo. Although qualitative descriptions of forest-atmosphere interactions are possible based on existing records, the net climate forcing from forest range shifts remains uncertain. Three critical gaps in knowledge hinder rigorous evaluations of causality necessary to probe for linkages between climatic and biogeographical patterns: (i) reconstructions of vegetation dynamics have not sufficiently represented warm biomes; (ii) climate and vegetation dynamics are typically assessed at non-comparable scales; and (iii) single-proxies are normally used to simultaneously infer changes in climate and vegetation distribution, leading to redundancy in interpretation. Addressing these issues would improve our ability to decipher past and predict future outcomes of forest-atmosphere interactions.


Anthropocene Climate change Forest migration Paleoecology Soil-plant-atmosphere interactions 



Net primary productivity


year before present


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2013_14020208_MOESM1_ESM.pdf (123 kb)
Supplementary material, approximately 126 KB.


  1. Anand M., M. Leithead, L.C.R. Silva, C. Wagner, M.W. Ashiq, J. Cecile, I. Drobyshev, Y. Bergeron, A. Das and C. Bulger. 2013. The scientific value of the largest remaining old-growth red pine forests in North America. Biodivers. Conserv. 22: 1847–1861.CrossRefGoogle Scholar
  2. Anand, M., A. Gonzalez, F. Guichard, J. Kolasa and L. Parrott. 2010. Ecological systems as complex systems: challenges for an emerging science. Diversity 2: 395–410.Google Scholar
  3. Anand, M. and B. Li. 2001. Spatiotemporal dynamics in a transition zone: Patchiness, scale, and an emergent property. Community Ecol. 2: 161–169.CrossRefGoogle Scholar
  4. Anand, M. and L. Orloci. 1997. Chaotic dynamics in a multispecies community. Environ. Ecol. Stat. 4: 337–344.CrossRefGoogle Scholar
  5. Anderson, R.G., J.G. Canadell, J.T. Randerson, R.B. Jackson, B.A. Hungate, D.D. Baldocchi, G.A. Ban-Weiss, G.B. Bonan, K. Caldeira, L. Cao, N.S. Diffenbaugh, K.R. Gurney, L.M. Kueppers, B.E. Law, S. Luyssaert and T.L. O’Halloran. 2011. Biophysical considerations in forestry for climate protection. Front. Ecol. Environ. 9: 174–182.CrossRefGoogle Scholar
  6. Arrigo, R.D., R. Wilson, B. Liepert and P. Cherubini. 2008. On the “Divergence Problem” in northern forests: A review of the tree-ring evidence and possible causes. Global Planet Change 60: 289–305.CrossRefGoogle Scholar
  7. Bala, G., K. Caldeira, M. Wickett, T. J. Phillips, D. B. Lobell, C. Delire and A. Mirin. 2007. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl. Acad. Sci. USA 104: 6550–6555.CrossRefPubMedGoogle Scholar
  8. Beer, C., M. Reichstein, E. Tomelleri, P. Ciais, M. Jung, N. Carvalhais, C. Rodenbeck, M. Arain, D. Baldocchi and G. Bonan. 2010. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science 329: 834–838.CrossRefPubMedGoogle Scholar
  9. Behling, H. and V.D. Pillar. 2007. Late Quaternary vegetation, biodiversity and fire dynamics on the southern Brazilian highland and their implication for conservation and management of modern Araucaria forest and grassland ecosystems. Philos. Trans. Roy. Soc. Lond. 362: 243–51.CrossRefGoogle Scholar
  10. Berner, R.A. and Z. Kothavala. 2001. GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time. Amer. J. Sci. 301: 182–204.CrossRefGoogle Scholar
  11. Bonan, G.B. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science. 320: 1444–1449.CrossRefPubMedGoogle Scholar
  12. Borucke, M., D. Moore, G. Cranston, K. Gracey, K. Iha, J. Larson, E. Lazarus, J. C. Morales, M. Wackernagel and A. Galli. 2013. Accounting for demand and supply of the biosphere’s regenerative capacity: The National Footprint Accounts’ underlying methodology and framework. Ecol. Indic. 24: 518–533.CrossRefGoogle Scholar
  13. Boyd, A. 1992. Musopsis n. Gen.: A banana-like leaf genus from the early tertiary of eastern north greenland. Amer. J. Bot. 79: 1359–1367.CrossRefGoogle Scholar
  14. Buitenwerf, R., W.J. Bond, N. Stevens and W.S.W. Trollope. 2012. Increased tree densities in South African savannas: >50 years of data suggests CO2 as a driver. Global Change Biol. 18: 675–684.CrossRefGoogle Scholar
  15. Callaway, R.M. 1997. Positive interactions in plant communities and the individualistic-continuum concept. Oecologia 112: 143–149.CrossRefPubMedGoogle Scholar
  16. Callaway, R.M., R. Michalet, P. Choler, F. I. Pugnaireq, C. J. Lortie, R. Michalet, C. Armasq, D. Kikodze and B.J. Cook. 2002. Positive interactions among alpine plants increase with stress. Nature 417: 844–848.CrossRefPubMedGoogle Scholar
  17. Choat, B., S. Jansen, T.J. Brodribb, H. Cochard, S. Delzon, R. Bhaskar, S.J. Bucci, T. S. Feild, S. M. Gleason, U.G. Hacke, A.L. Jacobsen, F. Lens, H. Maherali, J. Martínez-Vilalta, S. Mayr, M. Mencuccini, P.J. Mitchell, A. Nardini, J. Pittermann, R.B. Pratt, J.S. Sperry, M. Westoby, I.J. Wright and A.E. Zanne. 2012. Global convergence in the vulnerability of forests to drought. Nature 491: 752–755.CrossRefPubMedGoogle Scholar
  18. Churkina, G. and S.W. Running. 1998. Contrasting climatic controls on the estimated productivity of global terrestrial biomes. Ecosystems 1: 206–215.CrossRefGoogle Scholar
  19. Duarte, L., M. Dos-Santos, S. Hartz and V.D. Pillar. 2006. Role of nurse plants in araucaria forest expansion over grassland in south Brazil. Austral. Ecol. 31: 520–528.CrossRefGoogle Scholar
  20. Finzi, A.C., D.J.P. Moore, E.H. DeLucia, J. Lichter, K.S. Hofmockel, R.B. Jackson, H.-S. Kim, R. Matamala, H.R. McCarthy, R. Oren, J.S. Pippen and W.H. Schlesinger. 2006. Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. Ecology 87: 15–25.CrossRefPubMedGoogle Scholar
  21. Fluckiger, J., E. Monnin, B. Stauffer, J. Schwander, T.F. Stocker, J. Chappellaz, D. Raynaud and J.M.C. Barnola. 2002. High-resolution Holocene N2O ice core record and its relationship with CH4 and CO2. Global Biogeochem. Cycles 16: 1–8.CrossRefGoogle Scholar
  22. Franco A,C., Duarte, H.M., Geßler, A. et al. 2005. In situ measurements of carbon and nitrogen distribution and composition, photochemical efficiency and stable isotope ratios in Araucaria angustifolia. Trees 19: 422–430.CrossRefGoogle Scholar
  23. Friis, E.M., P.R. Crane and K.R. Pedersen. 2011. Early Flowers and Angiosperm Evolution. Cambridge Univ. Press, Cambridge.CrossRefGoogle Scholar
  24. Gedalof, Z. 2011. Climate and spatial patterns of wildfire. In: D. McKenzie, D. Falk and C. Miller (eds.), The Landscape Ecology of Fire. Springer, Berlin. pp. 89–116.CrossRefGoogle Scholar
  25. Gedalof, Z. and A.A. Berg. 2010. Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century. Global Biogeochem. Cycles 24: 2–7.CrossRefGoogle Scholar
  26. Gómez-Guerrero, A., Silva, L.C.R., Horwath, W.R., Barrera-Reyes, M., Kishchuk, B., Velázquez-Martínez, A., Trinidad-Hernández, T. and Plascencia-Escalante, O. 2013. Growth decline and divergent tree-ring isotopic composition (δ13C and δ18O) contradict predictions of CO2 stimulation in high altitudinal forests. Global Change Biol. 19: 1748–1758.CrossRefGoogle Scholar
  27. Grindrod, J. 1988. The palynology of Holocene mangrove and salt-marsh sediments. Rev. Palaeobot. Palynol. 55: 229–245.CrossRefGoogle Scholar
  28. Gunderson, L.H. and C.S. Holling. 2002. Panarchy: Understanding Transformations in Human and Natural Systems. Island Press, Washington, D.C.Google Scholar
  29. Gupta, A. 1993. The changing geomorphology of the humid tropics. Geomorphology 7: 165–186.CrossRefGoogle Scholar
  30. Higgins, S.I. and S. Scheiter. 2012. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488: 209–212.CrossRefPubMedGoogle Scholar
  31. Hoffmann, W.A., E.L. Geiger, S.G. Gotsch, D.R. Rossatto, L.C.R. Silva, O.L. Lau, M. Haridasan and A.C. Franco. 2012. Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecol. Lett. 15: 759–68.CrossRefPubMedGoogle Scholar
  32. Honisch, B., A. Ridgwell, D.N. Schmidt, E. Thomas, S.J. Gibbs, A. Sluijs, R. Zeebe, L. Kump, R.C. Martindale, S.E. Greene, W. Kiessling, J. Ries, J.C. Zachos, D.L. Royer, S. Barker, T.M. Marchitto, R. Moyer, C. Pelejero, P. Ziveri, G.L. Foster and B. Williams. 2012. The geological record of ocean acidification. Science 335: 1058–1063.CrossRefPubMedGoogle Scholar
  33. Jones, C., J. Lowe, S. Liddicoat and R. Betts. 2009. Committed terrestrial ecosystem changes due to climate change. Nat. Geosci. 2: 484–487.CrossRefGoogle Scholar
  34. Kurz, W.A., C.C. Dymond, G. Stinson, G.J. Rampley, E.T. Neilson, A.L. Carroll, T. Ebata and L. Safranyik. 2008. Mountain pine beetle and forest carbon feedback to climate change. Nature 452: 2006–2009.CrossRefGoogle Scholar
  35. Ladd, B., S.W. Laffan, W. Amelung, P.L. Peri, L.C.R. Silva, P. Gervassi, S.P. Bonser, M. Navall and D. Sheil. 2012. Estimates of soil carbon concentration in tropical and temperate forest and woodland from available GIS data on three continents. Global Ecol. Biogeogr. 22: 461–469.CrossRefGoogle Scholar
  36. Lamy, F., and J. Kaiser. 2009. Glacial to Holocene paleoceanographic and continental paleoclimate reconstructions based on ODP Site 1233/GeoB 3313 off southern Chile. In: F. Vimeux, F. Sylvestre, and M. Khodri (eds.), Past Climate Variability in South America and Surrounding Regions. Developments in Paleoenvironmental Research. Springer, Berlin. pp. 129–156.CrossRefGoogle Scholar
  37. Laurance, W.F., D. Carolina Useche, J. Rendeiro, M. Kalka, C.J.A. Bradshaw, et al. 2012. Averting biodiversity collapse in tropical forest protected areas. Nature 489: 290–294.CrossRefPubMedGoogle Scholar
  38. Ledru, M. 1998. Vegetation dynamics in southern and central Brazil during the last 10,000 yr B.P. Rev. Palaeobot. Palynol. 99: 131–142.CrossRefGoogle Scholar
  39. Leithead, M. 2010. Vegetation dynamics of north and south america: Gradients, climate change and disturbance across spatiotemporal scales. University of Guelph, 186 pp.Google Scholar
  40. Leithead, M.D., M. Anand and L.C.R. Silva. 2010. Northward migrating trees establish in treefall gaps at the northern limit of the temperate-boreal ecotone, Ontario, Canada. Oecologia 164: 1095–106.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Leithead, M.D., M. Anand, L.S. Duarte and V.D. Pillar. 2012a. Causal effects of latitude, disturbance and dispersal limitation on richness in a recovering temperate, subtropical and tropical forest. J. Veg. Sci. 23: 339–351.CrossRefGoogle Scholar
  42. Leithead, M.D., L.C.R. Silva and M. Anand. 2012b. Recruitment patterns in canopy gaps of an old-growth white pine forest in northern Ontario. Plant Ecol. 213: 1699–1714.CrossRefGoogle Scholar
  43. Levin, S. 1992. The problem of pattern and scale in ecology. Ecology 73: 1943–1967.CrossRefGoogle Scholar
  44. Luo, Y., J. Melillo, S. Niu, C. Beier, J. S. Clark, A. T. Classen, E. Davidson, J.S. Dukes, R.D. Evans, C.B. Field, C.I. Czimczik, M. Keller, B.A. Kimball, L.M. Kueppers, R.J. Norby, S.L. Pelini, E. Pendall, E. Rastetter, J. Six, M. Smith, M.G. Tjoelker and M.S. Torn. 2011. Coordinated approaches to quantify long-term ecosystem dynamics in response to global change. Global Change Biol. 17: 843–854.CrossRefGoogle Scholar
  45. Macias-Fauria, M., B. C. Forbes, P. Zetterberg, and T. Kumpula. 2012. Eurasian Arctic greening reveals teleconnections and the potential for structurally novel ecosystems. Nat. Climate Change 2: 1–6.CrossRefGoogle Scholar
  46. McLachlan, J.S., J.S. Clark and P.S. Manos. 2005. Molecular indicators of tree migration capacity under rapid climate change. Ecology 86: 2088–2098.CrossRefGoogle Scholar
  47. Morin, X. and I. Chuine. 2006. Niche breadth, competitive strength and range size of tree species: a trade-off based framework to understand species distribution. Ecol. Lett. 9: 185–95.CrossRefPubMedGoogle Scholar
  48. Morin, X., L. Fahse, M. Scherer-Lorenzen and H. Bugmann. 2011. Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecol. Lett. 14: 1211–1219.CrossRefPubMedGoogle Scholar
  49. Natali, S.M., E.A.G. Schuur and R.L. Rubin. 2012. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. J. Ecol. 100: 488–498.CrossRefGoogle Scholar
  50. Nock, C.A., P.J. Baker, W. Wanek, A. Leis, M. Grabner, S. Bunyavejchewin and P. Hietz. 2011. Long-term increases in intrinsic water-use efficiency do not lead to increased stem growth in a tropical monsoon forest in western Thailand. Global Change Biol. 17: 1049–1063.CrossRefGoogle Scholar
  51. Nordt, L., J. Von Fischer and L. Tieszen. 2007. Late Quaternary temperature record from buried soils of the North American Great Plains. Geology 35: 159–162.CrossRefGoogle Scholar
  52. Normile, D. 2009. Round and round: a guide to the carbon cycle. Science 325: 1642–1643.CrossRefPubMedGoogle Scholar
  53. Ocean, A. 2004. Eight glacial cycles from an Antarctic ice core. Nature 429: 623–628.CrossRefGoogle Scholar
  54. Oliveira, J. and V.D. Pillar. 2004. Vegetation dynamics on mosaics of campos and araucaria forest between 1974 and 1999 in southern Brazil. Community Ecol. 5: 197–202.CrossRefGoogle Scholar
  55. Orlóci, L. 2008. Vegetation displacement issues and transition statistics in climate warming cycle. Community Ecol. 9: 1–39.CrossRefGoogle Scholar
  56. Pan, Y., R.A. Birdsey, J. Fang, R. Houghton, P.E. Kauppi, W.A. Kurz, O.L. Phillips, A. Shvidenko, S.L. Lewis, J.G. Canadell, P. Ciais, R.B. Jackson, S.W. Pacala, A.D. McGuire, S. Piao, A. Rautiainen, S. Sitch and D. Hayes. 2011. A large and persistent carbon sink in the world’s forests. Science 333: 988–993.CrossRefPubMedGoogle Scholar
  57. Pagnutti, C., C.T. Bauch, and M. Anand. 2013. Outlook on a worldwide forest transition. PLoS ONE 8(10): e75890.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Peńuelas, J., J.M. Hunt, R. Ogaya and A.S. Jump. 2008. Twentieth century changes of tree-ring δ13C at the southern range-edge of Fagus sylvatica: increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes. Global Change Biol. 14: 1076–1088.CrossRefGoogle Scholar
  59. Petit, J.R., D. Raynaud, I. Basile, J. Chappellaz, M. Davisk, C. Ritz, M. Delmotte, M. Legrand, C. Lorius, L. Pe and E. Saltzmank. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429–436.CrossRefGoogle Scholar
  60. Ponette-González, A.G., K.C. Weathers and L.M. Curran. 2010a. Water inputs across a tropical montane landscape in Veracruz, Mexico: synergistic effects of land cover, rain and fog seasonality, and interannual precipitation variability. Global Change Biol. 16: 946–963.CrossRefGoogle Scholar
  61. Ponette-González, A.G., K.C. Weathers and L.M. Curran. 2010b. Tropical land-cover change alters biogeochemical inputs to ecosystems in a Mexican montane landscape. Ecol. Appl. 20: 1820–1837.CrossRefPubMedGoogle Scholar
  62. Randerson, J.T., H. Liu, M.G. Flanner, S.D. Chambers, Y. Jin, P.G. Hess, G. Pfister, M.C. Mack, K.K. Treseder, L.R. Welp, F.S. Chapin, J.W. Harden, M.L. Goulden, E. Lyons, J.C. Neff, E.A.G. Schuur and C. S. Zender. 2006. The impact of boreal forest fire on climate warming. Science 314: 1130–1132.CrossRefPubMedGoogle Scholar
  63. Reich, P., D. Tilman, F. Isbell, K. Mueller, S. Hobbie, D.F.B. Flynn and N. Eisenhauer. 2012. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336: 589–592.CrossRefGoogle Scholar
  64. Rohde, R.A. and R.A. Muller. 2005. Cycles in fossil diversity. Nature 434: 208–210.CrossRefPubMedGoogle Scholar
  65. Rossatto, D.R., Hoffmann, W.A. and Franco, A.C. 2009. Differences in growth patterns between co-occurring forest and savanna trees affect the forest-savanna boundary. Funct. Ecol. 23:689–698CrossRefGoogle Scholar
  66. Rossatto, D.R., L.C.R. Silva, R. Villalobos-Vega, L.D.S.L. Sternberg and A. C. Franco. 2012. Depth of water uptake in woody plants relates to groundwater level and vegetation structure along a topographic gradient in a neotropical savanna. Environ. Exp. Bot. 77: 259–266.CrossRefGoogle Scholar
  67. Sabine, C.L., M. Heimann, P. Artaxo, D.C.E. Bakker, C.-T.A. Chen, C.B. Field, N. Gruber, C. Le Quéré, R.G. Prinn, J.E. Richey, P.R. Lankao, J.A. Sathaye and R. Valentini. 2004. Current Status and Past Trends of the Global Carbon Cycle. In: C.B. Field and M.R. Raupach (eds.), The Global Carbon Cycle Integrating Humans Climate and the Natural World. Island Press, Washington D.C., pp. 17–44.Google Scholar
  68. Saha, S., T.M. Strazisar, E.S. Menges, P. Ellsworth and L. Sternberg. 2008. Linking the patterns in soil moisture to leaf water potential, stomatal conductance, growth, and mortality of dominant shrubs in the Florida scrub ecosystem. Plant Soil. 313: 113–127.CrossRefGoogle Scholar
  69. Salzer, M.W., M.K. Hughes, A.G. Bunn and K. F. Kipfmueller. 2009. Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes. Proc. Natl. Acad. Sci. USA 106: 20348–20353.CrossRefPubMedGoogle Scholar
  70. Schimel, D.S., G.P. Asner and P. Moorcroft. 2013. Observing changing ecological diversity in the Anthropocene. Front. Ecol. Environ. 11: 129–137.CrossRefGoogle Scholar
  71. Silva, L.C.R., R. Corręa, T.A. Doane, E. Pereira and W.R. Horwath. 2013. Unprecedented carbon accumulation in mined soils: the synergistic effect of resource input and plant species invasion. Ecol. Appl. 23: 1345–1356.CrossRefPubMedGoogle Scholar
  72. Silva, L.C.R. and M. Anand. 2011. Mechanisms of Araucaria (Atlantic) forest expansion into southern Brazilian grasslands. Ecosystems 14: 1354–1371.CrossRefGoogle Scholar
  73. Silva, L.C.R., and M. Anand. 2013. Probing for the influence of atmospheric CO2 and climate change on forest ecosystems across biomes. Global Ecol. Biogeogr. 22: 83–92.CrossRefGoogle Scholar
  74. Silva, L.C.R., M. Anand and M. D. Leithead. 2010a. Recent widespread tree growth decline despite increasing atmospheric CO2. PLoS ONE 5:7.CrossRefGoogle Scholar
  75. Silva, L.C.R., M. Anand, J.M. Oliveira and V.D. Pillar. 2009. Past century changes in Araucaria angustifolia (Bertol.) Kuntze water use efficiency and growth in forest and grassland ecosystems of southern Brazil: implications for forest expansion. Global Change Biol. 15: 2387–2396.CrossRefGoogle Scholar
  76. Silva, L.C.R., M.A. Giorgis, M. Anand, L. Enrico, N. Pérez-Harguindeguy, V. Falczuk, L.L. Tieszen and M. Cabido. 2011. Evidence of shift in C4 species range in central Argentina during the late Holocene. Plant Soil. 349: 261–279.CrossRefGoogle Scholar
  77. Silva, L.C.R., M. Haridasan and W.A. Hoffmann. 2010b. Not all forests are expanding over central Brazilian savannas. Plant Soil. 333: 431–442.CrossRefGoogle Scholar
  78. Silva, L.C.R., L. Sternberg, M. Haridasan, W.A. Hoffmann, F. Miralles-Wilhelm and A.C. Franco. 2008. Expansion of gallery forests into central Brazilian savannas. Global Change Biol. 14: 2108–2118.CrossRefGoogle Scholar
  79. Silva, L.C.R., G.D. Vale, R.F. Haidar and L.S. Sternberg. 2010c. Deciphering earth mound origins in central Brazil. Plant Soil. 336: 3–14.CrossRefGoogle Scholar
  80. Silva, L.C.R., W.A. Hoffmann, D.R. Rossatto, M. Haridasan, A.C. Franco, W.R. Horwath. In Press. Can savannas become forests? A coupled analysis of nutrient stocks and fire thresholds in central Brazil. Plant Soil. DOI 10.1007/s11104-013-1822-xGoogle Scholar
  81. Silva, L.C.R. and W.R. Horwath. 2013. Explaining global increases in water use efficiency: Why have we overestimated responses to rising atmospheric CO2 in natural forest ecosystems? PLoS ONE. 8(1): e530.Google Scholar
  82. Snyder, P.K., C. Delire and J.A. Foley. 2004. Evaluating the influence of different vegetation biomes on the global climate. Climate Dynamics 23: 279–302.CrossRefGoogle Scholar
  83. Solomon, S., G.-K. Plattner, R. Knutti and P. Friedlingstein. 2009. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 106: 1704–1709.CrossRefPubMedGoogle Scholar
  84. Strikis, N.M., F.W. Cruz, H. Cheng, I. Karmann, R.L. Edwards, M. Vuille, X. Wang, M.S. de Paula, V.F. Novello and A.S. Auler. 2011. Abrupt variations in South American monsoon rainfall during the Holocene based on a speleothem record from central-eastern Brazil. Geology 39: 1075–1078.CrossRefGoogle Scholar
  85. Taylor, Z.P., S.P. Horn, C.I. Mora, K.H. Orvis and L.W. Cooper. 2010. A multi-proxy palaeoecological record of late-Holocene forest expansion in lowland Bolivia. Palaeogeogr. Palaeoecol. 293: 98–107.CrossRefGoogle Scholar
  86. Tilman, D., P. Reich and F. Isbell. 2012. Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proc. Natl. Acad. Sci. USA 109: 10394–10397.CrossRefPubMedGoogle Scholar
  87. Umemiya, C., E. Rametsteiner and F. Kraxner. 2010. Quantifying the impacts of the quality of governance on deforestation. Environ. Sci. Pol. 13: 695–701.CrossRefGoogle Scholar
  88. Valladares, F., E. Gianoli and J. Gûmez. 2007. Ecological limits to plant phenotypic plasticity. New Phytol. 176: 749–763.CrossRefPubMedGoogle Scholar
  89. Van Mantgem, P.J., N.L. Stephenson, J.C. Byrne, L.D. Daniels, J.F. Franklin, P.Z. Fulé, M.E. Harmon, A.J. Larson, J.M. Smith, A.H. Taylor and T.T. Veblen. 2009. Widespread increase of tree mortality rates in the western United States. Science 323: 521–524.CrossRefPubMedGoogle Scholar
  90. Vandermark, D., J.A. Tarduno, D.B. Brinkman, R.D. Cottrell and S. Mason. 2009. New Late Cretaceous macrobaenid turtle with Asian affinities from the High Canadian Arctic: Dispersal via ice-free polar routes. Geology 37: 183–186.CrossRefGoogle Scholar
  91. Veizer, J., Y. Godderis and L. M. François. 2000. Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature. 408: 698–701.CrossRefPubMedGoogle Scholar
  92. Vimeux, F., F. Sylvestre and M. Khodri. 2009. Past climate variability in South America and surrounding regions. Springer, Berlin.CrossRefGoogle Scholar
  93. Von Fischer, J.C., L.L. Tieszen and D.S. Schimel. 2008. Climate controls on C3 vs. C4 productivity in North American grasslands from carbon isotope composition of soil organic matter. Global Change Biol. 14: 1141–1155.CrossRefGoogle Scholar
  94. Wettstein, J.J., J.S. Littell, J.M. Wallace and Z. Gedalof. 2011. Coherent region-, species-, and frequency-dependent local climate signals in Northern Hemisphere tree-ring widths. J. Climate 24: 5998–6012.CrossRefGoogle Scholar
  95. Williams, J.W., B.N. Shuman, T. Webb, P.J. Bartlein and P.L. Leduc. 2004. Late-Quaternary vegetation dynamics in North America: Scaling from taxa to biomes. Ecol. Monogr. 74: 309–334.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2013

Authors and Affiliations

  1. 1.Global Ecological Change Laboratory, School of Environmental SciencesUniversity of GuelphGuelphCanada
  2. 2.Biogeochemistry and Nutrient Cycling Laboratory, Department of Land Air and Water ResourcesUniversity of California DavisUSA

Personalised recommendations