Compression and knowledge discovery in ecology

Abstract

Knowledge discovery is the non-trivial process of identifying valid, novel, interesting, potentially useful and ultimately understandable patterns in data. It encompasses a wide range of techniques ranging from data cleaning to finding manifolds and separating mixtures. Starting in the early 50’s, ecologists contributed greatly to the development of these methods and applied them to a large number of problems. However, underlying the methodology are some fundamental questions bearing on their choice and function. In addition, other fields, from sociology to quantum mechanics, have developed alternatives or solutions to various problems. In this paper, I want to look at some of the general questions underlying the processes. I shall then briefly examine aspects of 3 areas, manifolds, clustering and networks, specifically for choosing between them using the concept of compression. Finally, I shall briefly examine some of the future possibilities which remain to be examined. These provide methods of possibly improving the results of clustering analysis in vegetation studies.

References

  1. Adomavicius, G. and Tuzhilin, A. 1997. Discovery of actionable patterns in databases: the action hierarchy approach. In: Heckerman, D., Mannila, H., Pregibon, D. and Uthurusamy, R. (eds.), Proceedings 3rd International Conference Knowledge Discovery Data Mining. AAAI, pp. 111–114.

  2. Aerts, D. and Gabora, L. 2005. A theory of concepts and their combinations I: The structure of the sets of contexts and properties. Kybernetes 34: 151–175.

    Article  Google Scholar 

  3. Aha, D.W., Kibler, D. and Albert, M.K. 1991. Instance-based learning algorithms. Mach. Learn. 6: 37–66.

    Google Scholar 

  4. Aitchison, J. 1986. The Statistical Analysis of Compositional Data. Chapman & Hall, London.

    Book  Google Scholar 

  5. Akaike, H. 1974. A new look at the statistical model identification. IEEE Trans. Autom. Control 19: 716–723.

    Article  Google Scholar 

  6. Allen, T.F.H. and Hoekstra, T.W. 1990. The confusion between scale-defined levels and conventional levels of organization in ecology. J. Veg. Sci. 1: 5–12.

    Article  Google Scholar 

  7. Anderson, M. Fu, G-S., Phlypo, R. and Adali, T. 2013 Independent vector analysis: identification conditions and performance bounds. arxiv 1303.7474.

  8. Antonelli, P.L. 1990. Applied Volterra-Hamilton systems of the Finsler type: increased species diversity as a non-chemical defense for coral against crown-of-thorns. In: Bradbury, R. H. (ed.), Acanthaster and the Coral Reef: A Theoretical Perspective, Lecture Notes in Biomathematics 8, Springer-Verlag, Berlin. pp. 220–235.

    Chapter  Google Scholar 

  9. Babušaka, R., van der Venn, P.J. and Kaymak, U. 2002. Improved covariance estimation for Gustafson-Kessel clustering. Proceedings of the 2002 IEEE International Conference on Fuzzy Systems, Honolulu. pp. 1081–1085.

  10. Beals, E.W. 1973 Ordination: mathematical elegance and ecological naiveté. J. Ecol. 61: 23–35.

    Article  Google Scholar 

  11. Béjar, J. 2000. Improving knowledge discovery using domain knowledge in unsupervised learning. Lect. Notes Comput. Sc. 1810: 47–54.

    Article  Google Scholar 

  12. Benzecri, J-P. 1973. L’Analyse des Données. Vol. II. L’Analyse des Correspondances. Dunod, Paris.

    Google Scholar 

  13. Bio, A.M.F., Alkemade, R. and Barendregt, A. 1998. Determining alternative models for vegetation response analysis: a non-parametric approach. J. Veg. Sci. 9: 5–16.

    Article  Google Scholar 

  14. Blumer, A., Ehrenfeucht, A., Haussler, D. and Warmuth, M.K. 1987. Occam’s razor. Inform. Process. Lett. 24: 377–380.

    Article  Google Scholar 

  15. Blumer, A., Ehrenfeucht, A., Haussler, D. and Warmuth, M.K. 1989. Learnability and the Vapnik-Chervonenkis dimension. J. ACM 36: 929–965.

    Article  Google Scholar 

  16. Bolognini, G. and Nimis, P.L. 1993. Phytogeography of Italian deciduous oakwoods based on numerical classification of plant distribution ranges. J. Veg. Sci. 4: 847–860.

    Article  Google Scholar 

  17. Bond, T.G. and Fox, C.M. 2007. Applying the Rasch Model: Fundamental Measurement in the Human Sciences. 2nd ed. (includes Rasch software on CD-ROM). Lawrence Erlbaum, Mahwah, NJ.

    Google Scholar 

  18. Bonnard, C., Berry, V. and Lartillot, N. 2005. Multipolar consensus for phylogenetic trees. Syst. Biol. 55: 837–843.

    Article  Google Scholar 

  19. Borg, I. and Groenen, P. 2005. Modern Multidimensional Scaling: Theory and Applications. 2nd ed. Springer, New York.

    Google Scholar 

  20. Brooks, R.J. and Tobias, A.M. 1996. Choosing the best model: level of detail, complexity and model performance. Math. Comput. Model. 24: 1–14.

    Article  Google Scholar 

  21. Buehrer, D. and Lee, C.-H. 2013 Class algebra for ontology reasoning. arXiv 1302.0334.

  22. Bunitine, W. and Jakulin, A. 2006. Discrete component analysis. arXiv 0604410.

  23. Caruana, R.R. and Freitag, D. 1994. How useful is relevance? Working Notes of the AAAI Fall Symposium on Relevance. AAAI Press, New Orleans, pp. 25–29.

    Google Scholar 

  24. Carroll, J.D. and Chang, J.J. 1970. Analysis of individual differences in multidimensional scaling via an N-way generalization of ‘Eckhart-Young’ decomposition. Psychometrika 35: 283–319.

    Article  Google Scholar 

  25. Cheeseman, P. 1990. On finding the most probable model. In: Sharger, J. and Langley, P. (eds.), Computational Models of Scientific Discovery and Theory Formation. Morgan Kaufmann, San Mateo, pp. 73–96.

    Google Scholar 

  26. Chen, K. 2013. Towards the acquisition of temporal knowledge. arXiv 1304.3079.

  27. Cilibrasi, R. 2006. Statistical inference through data compression. ILLC Dissertation Series DS–2006–08, Institute for Logic, Language and Computation, Universiteit van Amsterdam.

  28. Coscia, M., Giannotti, F. and Pedrechi, D. 2012. A classification of community discovery methods in complex networks. arXiv 1206.3552.

  29. Coombs, C.H. and Kao, R.C. 1955. Nonmetric Factor Analysis. Engineering Research Bulletin 38, Engineering Research Institute, University of Michigan, Ann Arbor.

  30. Crutchfield, J.P. 1990. Information and its metric. In: Lam, L. and Morris, H.C. (eds.), Nonlinear Structures in Physical Systems — Pattern Formation, Chaos, and Waves. Springer, Berlin, pp. 119–130.

    Chapter  Google Scholar 

  31. Dale, M. 1985. Graph theoretical methods for comparing phytosociological structures. Vegetatio 63: 79–88.

    Google Scholar 

  32. Dale, M.B. 2000. On plexus representation of dissimilarities. Community Ecol. 1: 43–56.

    Article  Google Scholar 

  33. Dale, M.B. and Anderson, D.J. 1973. Inosculate analysis of vegetation data. Austr. J. Bot. 21: 253–276.

    Article  Google Scholar 

  34. Dale, M.B. and Barson, M.M. 1989. Grammars in vegetation analysis. Vegetatio 81: 79–94.

    Article  Google Scholar 

  35. Dale, M.B. and Clifford, H.T. 1976. The effectiveness of higher taxonomic ranks for vegetation analysis. Austr. J. Ecol. 1: 37–62.

    Article  Google Scholar 

  36. Dale, M.B. and Hogeweg, P. 1998. The dynamics of diversity: a cellular automaton approach. Coenoses 13: 3–15.

    Google Scholar 

  37. Dale, P.E.R. 1983. Scale problem in classification: an application of a stochastic method to evaluate the relative heterogeneity of sample units. Austr. J. Ecol. 8: 189–198.

    Article  Google Scholar 

  38. Day, W. H. E. 1988. Consensus methods as tools in data analysis. In: Bock, H.H. (ed.), Classification and Related Methods of Data Analysis. North Holland, Amsterdam, pp. 317–324.

    Google Scholar 

  39. de Leeuw, J. 2005. Multidimensional Unfolding. The Encyclopedia of Statistics in Behavioral Science, Wiley, N.Y.

    Google Scholar 

  40. Diday, E. and Bertrand, P. 1986. An extension to hierarchical clustering: the pyramidal presentation. In: Gelsema E.s. and Kanak, L.N. (eds), Pattern Recognition in Practice. Elsevier Science, Amsterdam, pp. 411–424

    Chapter  Google Scholar 

  41. Diday, E., and Emilion, R. 1997. Treillis de Galois maximaux et Capacités de Choquet. Comptes Rendus de l’Académie des Sciences. Analyse Mathématique Séries 1, Mathematics. 325: 261–266.

    Google Scholar 

  42. Echenin, M., Peltier, N. and Tourret, S. 2013. An approach to abductive reasoning in equational logic. Proceedings of the 23rd International Joint Conference on Artificial Intelligence, pp. 531–537.

  43. Epstein, S. 2013. All sampling methods produce outliers. arXiv 1304.3872.

  44. Fekete, G. and Lacza, J.Sz. 1970. A survey of plant life form systems and the respective research approaches II. Annals Historico-Naturales Musei Nationalis Hungarici Pars Botanica 62: 115–127.

    Google Scholar 

  45. Feoli, E. and Zuccarello, V. 1986. Ordination based on classification: yet another solution? Abstracta Botanica 10: 203–219.

    Google Scholar 

  46. Feoli, E. and Zuccarello, V. 1994. Naivete of fuzzy system space in vegetation dynamics. Coenoses 9: 25–32.

    Google Scholar 

  47. Foster, D., Kakade, S. and Salakhutdinov, R. 2011. Domain adaptation: overfitting and small sample statistics. ArXiv 105.0857v1.

  48. Gell-Mann, M. 1994 The Quark and the Jaguar. W. H. Freeman, San Francisco.

    Google Scholar 

  49. Gençay, R., Selçuk, F. and Whitcher, B. 2001. An Introduction to Wavelets and Other Filtering Methods in Finance and Economics. Academic Press, N.Y.

    Google Scholar 

  50. Gifi, A. 1990. Nonlinear Multivariate Analysis. Wiley, New York.

    Google Scholar 

  51. Globerson, A. and Tisby, N. 2003 Sufficient dimensionality reduction. J. Machine Learning Res. 3: 1307–1331.

    Google Scholar 

  52. Goodall, D.W. 1952. Objective methods in the classification of vegetation I. The use of positive interspecific correlation. Aust. J. Bot. 1: 39–63.

    Google Scholar 

  53. Gopalakrishna, A.K., Ozcelebi, T., Liotta, A. and Lukkein, J. 2013. Relevance as a metric for evaluating machine learning algorithms. arXiv 1303.7093.

  54. Gorban, A., Sumner, N.R. and Zinovyev, A. 2008. Beyond the concept of manifolds: principal trees, metro maps, and elastic cubic complexes. In: Gorban, A., Kégl, B., Wunsch, D. and Zinovyev, A. (eds.), Principal Manifolds for Data Visualization and Dimension Reduction, Lecture Notes in Computational Science and Engineering 58: 219–237.

  55. Gower, J.C. 1977. The analysis of asymmetry and orthogonality. In: Barra, J. R. et al. (eds.), Recent Developments in Statistics. North Holland, Amsterdam, pp. 109–123.

    Google Scholar 

  56. Grassberger, P. 1991. Information and Complexity Measures. In: Atmanspacher, H. and Scheingraber, H. (eds), Dynamical Systems, Information Dynamics, Plenum Press, New York, pp. 15–33.

    Chapter  Google Scholar 

  57. Gull, S.F. 1988. Bayesian inductive inference and maximum entropy. In: Erickson, G.J. and Smith, C.R. (eds.), Maximum Entropy and Bayesian Methods in Science and Engineering. 1. Foundations. Kluwer, Dordrecht. pp. 53–74.

    Chapter  Google Scholar 

  58. Gustafson, E. and Kessel, W. 1979. Fuzzy clustering with a fuzzy covariance matrix. In: Proceedings I. E. E. E. Conference Decision Control. pp. 761 –766.

  59. Hájek, P. and Havránek, T. 1977. On generation of inductive hypotheses. Int. J. Man-Mach. Stud. 9: 415–438.

    Article  Google Scholar 

  60. Heiser, W.J. 1987. Joint ordination of species and sites: the unfolding technique. In: Legendre, P. and Legendre, L. (eds.), Developments in Numerical Ecology. Springer, Berlin. pp. 189–221.

    Chapter  Google Scholar 

  61. Hernández-Orallo, J. 1998. Consilience as a basis for theory formation. In: Magnani, L. Nersessian, N.J. and Thagard, P. (eds.), Proc. Conf. Model Based Reasoning, Pavia (MBR’98). Kluwer/Plenum. pp. 17–19.

    Google Scholar 

  62. Hernández-Orallo, J. 1999. Computational measures of information gain and reinforcement in inference processes. PhD Thesis, Department of Logic and Philosophy, University of Valencia.

  63. Hill, M.O. 1973. Reciprocal averaging: an eigenvector method of ordination. J. Ecol. 61: 237–249.

    Article  Google Scholar 

  64. Hill, M.O. and Gauch, H.G. Jr. 1980. Detrended correspondence analysis, an improved ordination technique. Vegetatio 42: 47–58.

    Article  Google Scholar 

  65. Hron, K., Templ, M. and Filzmoser, P. 2010. Exploratory compositional data analysis using the R-package robCompositions. In: Aivazian, S., Filzmoser, P. and Kharin, Yu. (eds.), Proceedings 9th International Conference on Computer Data Analysis and Modeling, Belarusian State University, Minsk. 1: 179–186.

  66. Hubert, L., Meulman, J. and Heiser, W. 2000. Two purposes for matrix factorization: a historical appraisal. SIAM Review 42: 68–82.

    Article  Google Scholar 

  67. Hyvärinen, A. and Oja, E. 2000. Independent component analysis: algorithms and applications. Neural Networks 13: 411–430.

    Article  PubMed  Google Scholar 

  68. Hyvärinen, A. and Pajunen, P. 1999. Nonlinear independent component analysis: existence and uniqueness results. Neural Networks 12: 429–439.

    Article  PubMed  Google Scholar 

  69. Ihm, P. and van Groenewoud, H. 1984. Correspondence analysis and Gaussian ordination. COMPSTAT lectures 3: 5–60.

    Google Scholar 

  70. Jeffrey, H. 1961. Theory of Probability. Cambridge University Press, Cambridge.

    Google Scholar 

  71. Jiang, J. 2008. A literature survey on domain adaptation. https://doi.org/si-faka.cs.uiuc.edu/jiang4/domain adaptation/survey/da sur-vey.pdf

  72. Joshi, M., Lingras, P., Yiyu Yao, Virendrakumar, C.B. 2010. Rough, fuzzy, interval clustering for web usage mining. In: Lingras, O., Yao, Y. Y. and Virendrakumar, C.B. (eds), 10th International Conference on Intelligent Systems Design and Applications (ISDA), pp. 397–402.

  73. Kadous, M.W. 1995. Expanding the scope of concept learning using meta features. School of Computer Science and Engineering, University of New South Wales. https://doi.org/rexa.info/paper/4ccb84298ff6f0a62f8263c57259cc114cb1b328

  74. Kawakami, H., Akinaga, R., Suto, H. and Katai, O. 2003. Translating novelty of business models into terms of modal logics. Proceedings 16th Australian Conference on AI, Lecture Notes in Computer Science. pp. 821–832.

  75. Kaymak, U. and Setnes, M. 2002. Fuzzy clustering with volume prototypes and adaptive cluster merging. IEEE Transactions on Fuzzy Systems 10(6): 705–712.

    Article  Google Scholar 

  76. Kearns, M., Mansour, Y. and Ng, A.Y. 2013. An information analysis of hard and soft assignment methods for clustering. arXiv 1302.1552.

  77. Kemp, C., Perfors, A. and Tenenbaum, J.B. 2007. Learning overhypotheses with hierarchical Bayesian models. Dev. Sci. 10: 307–321.

    Article  Google Scholar 

  78. Kiers, H.A.L. 1994. SIMPLIMAX: Oblique rotation to an optimal target with simple structure. Psychometrika 59: 567–579.

    Article  Google Scholar 

  79. Keogh, E.J., Lonardi, S., Ratanamahatana, C.A., Wei, L., Lee, S-H. and Handley, J. 2007. Compression-based data mining of sequential data. Data Min. Knowl. Disc. 14: 99–129.

    Article  Google Scholar 

  80. Kodratoff, Y. 1986. Leçons d’apprentissage symbolique, Editions Cépadues, Toulouse.

    Google Scholar 

  81. Kolmogorov, A.N. 1965. Three approaches to the quantitative definition of information. Problems of Information Transmission 1: 4–17.

    Google Scholar 

  82. Koppel, M. and Atlan, H. 1991. An almost machine-independent theory of program-length complexity, sophistication, and induction. Information Sciences 56: 23–33.

    Article  Google Scholar 

  83. Kordon, A. 2009. Computational intelligence marketing. SIGEVO-lution 4: 2–11.

    Article  Google Scholar 

  84. Kourie, D.G. and Oosthuizen, G.D. 1998. Lattices in machine learning: complexity issues. Acta Informatica 35: 289–292.

    Article  Google Scholar 

  85. Krishnapuram, R. and Keller, J. 1993 A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1: 98–110.

    Article  Google Scholar 

  86. Kruskal, J.B. 1964. Multidimensional scaling by optimizing goodness of fit to nonmetric hypothesis. Psychometrika 29: 1–27.

    Article  Google Scholar 

  87. Kušelová, I. and Chytrý, M. 2004. Interspecific associations in phytosociological data sets: how do they change between local and regional scale? Plant Ecol. 173: 247–257.

    Article  Google Scholar 

  88. Lambert, J.M. and Williams, W.T. 1962 Multivariate methods in plant ecology IV. Nodal Analysis. J. Ecol. 50: 775–803.

    Article  Google Scholar 

  89. Lance, G.N. and Williams, W.T. 1967 A general theory of classificatory sorting strategies I. Hierarchical systems. Comput. J. 9: 373–380.

    Article  Google Scholar 

  90. Laurence, S. and Margolis, E. 1999. Concepts: Core Readings. MIT Press, Cambridge.

    Google Scholar 

  91. Lavorel, S., Mcintyre, S., Landsberg, J. and Forbes, T.D.A. 1997. Plant functional classifications: from general groups to specific groups based on disturbance. Trends Ecol. Evol. 12: 474–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lempel, A. and Ziv, J. 1976. On the complexity of finite sequences. IEEE Trans. Inf. Theory 22: 75–81.

    Article  Google Scholar 

  93. Liu, B., Hsu, W., Mun, L-F. and Lee, H.-Y. 1999. Finding interesting patterns using user expectation. I.E.E.E. Transactions Knowledge Data Engineering 11: 817–832.

    Google Scholar 

  94. Lloyd, S. 2001. Measures of complexity: A non-exhaustive list. IEEE Control Systems Magazine 21: 78.

    Google Scholar 

  95. Lopez-Ruiz, R., Sanudo, J., Romera, E. and Calbet, X. 2012 Statistical complexity and Fisher-Shannon Information. Applications. arXiv 1201.2291.

  96. Lugosi, G. and Zeger, K. 1996. Concept learning using complexity regularization. IEEE Transactions Information Theory 42: 48–54.

    Article  Google Scholar 

  97. Macnaughton-Smith, P. 1965. Some statistical and other numerical techniques for classifying individuals. Home Office Res. Unit Rep. 6, HMSO, London.

    Google Scholar 

  98. McQuarrie, A.D.R. and Tsai, C.-L. 1998. Regression and Time Series Model Selection. World Scientific, Singapore.

    Google Scholar 

  99. Mikkelson, G.M. 2001. Complexity and verisimilitude: realism for ecology. Biol. Philos. 16: 533–546.

    Article  Google Scholar 

  100. Mondal, N. and Ghosh, P.P. 2013. On the existence of parallel computation in nature. arXiv 1304.0160.

  101. Moraczewski, I.R. 1993a. Fuzzy logic for phytosociology 1. Syntaxa as vague concepts. Vegetatio 106: 1–11.

    Article  Google Scholar 

  102. Moraczewski, I.R. 1993b. Fuzzy logic for phytosociology 2. Generalizations and prediction. Vegetatio 106: 13–20.

    Article  Google Scholar 

  103. Ng, A., Jordan, M. and Weiss, Y. 2001. On spectral clustering: analysis and an algorithm. Advances in Neural Information Processing Systems 14:849–856.

    Google Scholar 

  104. Niven, B.S. 1988. The ecosystem as an algebraic category: a mathematical basis for theory of community and ecosystem in animal ecology. Coenoses 3: 83–88.

    Google Scholar 

  105. Niven, B.S. 1992. Formalization of some basic concepts of plant ecology Coenoses 7: 103–113.

    Google Scholar 

  106. Orlóci, L. 1991. On character-based plant community analysis: choice, arrangement, comparison. Coenoses 5: 103–108.

    Google Scholar 

  107. Pascual-Montano, A., Crazo, J.M., Kochi, K., Lehman, D. and Pascual-Montano, R. 2006. Nonsmooth nonnegative matrix factorisation. IEEE Transactions Pattern Analysis Machine Intelligence 28: 403–415.

    Article  Google Scholar 

  108. Pestov, V. 2010. PAC learnability of a concept class under non-atomic measures: a problem by Vidyasagar. arXiv 1006.5090.

  109. Pestov, V. 2011. PAC learnability versus VC dimension: a footnote to a basic result of statistical learning. arXiv 1104:2097.

  110. Peters, G. 2006. Some refinements of rough k-means clustering. Pattern Recognition 39: 1481–1491.

    Article  Google Scholar 

  111. Podani, J. 1986. Comparisons of partitions in vegetation studies. Abstracta Botanica 10: 235–290.

    Google Scholar 

  112. Podani, J. 1989. A method for generating consensus partitions and its application to community classification. Coenoses 4: 1–10.

    Google Scholar 

  113. Podani, J. 1998. Explanatory variables in classifications and the detection of the optimum number of clusters. In: Hayashi, C., Ohsumi, N., Yajima, K., Tanaka, Y., Bock, H.-H. and Baba, Y. (eds.), Data Science, Classification and Related Methods. Springer, Tokyo, pp. 125–132.

  114. Porter, B.W., Bareiss, E.R. and Holte, R.C. 1990. Concept learning and heuristic classification in weak-theory domains. Artificial Intelligence 45: 229–263.

    Article  Google Scholar 

  115. Rissanen, J. 1978. Modelling by the shortest data description. Automatica 14: 465–471.

    Article  Google Scholar 

  116. Ruspini. E. 1970. Numerical methods for fuzzy clustering. Information Science 12: 319–350.

    Article  Google Scholar 

  117. Ruspini, E.H. 2013. Possibility as similarity: the semantics of fuzzy logic. arXiv 1304.1115.

  118. Salakhutdinov, S. and Hinton, G. 2012. An efficient learning procedure for deep Boltzmann machines. Neural Comput. 24: 1967–2006.

    Article  PubMed  Google Scholar 

  119. Scholz, M. and Klinkenberg, R. 2005. An ensemble classifier for drifting concepts. In: Gama, J. and Aguilar-Ruiz, J. S. (eds.), Proceedings 2nd International Workshop on Knowledge Discovery in Data Streams, pp. 53–64.

  120. Schöneman, P.H. 1970. On metric multidimensional unfolding. Psychometrika 35: 349–366.

    Article  Google Scholar 

  121. Sharger, J. and Langley, P. 1990. Computational Models of Scientific Discovery and Theory Formation. Morgan Kaufman, San Mateo.

    Google Scholar 

  122. Shayda, D.O. 2012. Kolmogorov complexity, causality and spin. arXiv 1204.5447.

  123. Shi, J. and Malik, J. 2000. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22: 888–905.

    Article  Google Scholar 

  124. Shu, L., Chen, A., Xiong, M. and Meng, W. 2011. Efficient spectral neighborhood blocking for entity resolution. IEEE International Conference on Data Engineering (ICDE), pp. 1067–1078.

  125. Silberschatz, A. and Tuzhilin, A. 1996. What makes patterns interesting in knowledge discovery systems. IEEE Trans. Knowl. Data Eng. 8: 970–974.

    Article  Google Scholar 

  126. Smith, R. L. 1985. Maximum likelihood estimation in a class of nonregular cased. Biometrika 72: 67–90.

    Article  Google Scholar 

  127. Solomonoff, R.J. 2008. Three kinds of probabilistic induction: universal distributions and convergence theorems. Comput. J. 51: 566–570.

    Article  Google Scholar 

  128. Sommer, S., Lauze, F. and Nielsen, M. 2010. Optimization over geodesics for exact principal geodesic analysis. arXiv 1008.1902.

  129. Takane, Y., Young, F.W. and de Leeuw, J. 1977. Nonmetric individual differences in multidimensional scaling: an alternating least squares method with optimal scaling features. Psychometrika 42: 7–67.

    Article  Google Scholar 

  130. Thurstone, L.L. 1935. The Vectors of the Mind. University of Chicago Press, Chicago.

    Google Scholar 

  131. Timm, H., Borgelt, C., Döring, C. and Kruse, R. 2009. An extension to possibilistic fuzzy cluster analysis. https://doi.org/dx.doi.org/10.1016/j.fss.2003.11.009

  132. Trunk, G. 1976. Statistical estimation of the intrinsic dimensionality of data collections. Inform. Control 12: 508–525.

    Article  Google Scholar 

  133. Ván, P. 2006. Unique additive information measures Boltzman-Gibbs-Shannon, Fisher and beyond. Physica A 365: 28–33.

    Article  Google Scholar 

  134. Vapnik, V.N. and Chervonenkis, A. 1971. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications 16 : 264–280.

    Article  Google Scholar 

  135. Veness, J. Sunehag, P. and Hutter, M. 2012. On ensemble techniques for [AIXI] approximation Lecture Notes Artificial Intelligence 7716: 341–351.

    Google Scholar 

  136. Vereshchagin, N. and Vitányi, P. 2003. Kolmogorov’s structure functions and model selection. arXiv cc/0204037v5.

  137. Visser, G., Dowe, D.L. and Uotila, J.P. 2009. Enhanced MML clustering using context data with climate applications. Lect. Notes Computer Sci. 5866: 170–179.

    Article  Google Scholar 

  138. Voges, K.E. 2012. Rough clustering using an evolutionary algorithm. Proceedings 45th Hawaii International Conferences on Systems Science (HICSS), pp. 1138–1145.

  139. Vyugin, V.V. 1999. Most sequences are predictable. Tech. Report CLRC-TR-99-01, Computer Learning Research Centre, Royal Hollaway College, University of London, UK.

  140. Wallace, C.S. 1998. Intrinsic classification of spatially-correlated data. Comput. J. 41: 602–611.

    Article  Google Scholar 

  141. Wallace, C.S. 2005. Statistical and Inductive Inference by Minimum Message Length. Springer, Berlin.

    Google Scholar 

  142. Wallace, C.S. and Boulton, D.M. 1968. An information measure for classification. Comput. J. 11: 185–195.

    Article  Google Scholar 

  143. Wallace, C.S. and Dale, M.B. 2005. Hierarchical clusters of vegetation types. Community Ecol. 6: 65–74.

    Article  Google Scholar 

  144. Wang, L. and Fu, X. 2005. Data mining with computational intelligence. Advanced Information and Knowledge Processing. Springer-Verlag, New York.

    Google Scholar 

  145. Watanabe, S. 1969. Knowing and Guessing. Wiley, New York.

    Google Scholar 

  146. Watts, D.J. and Strogatz, S.H. 1998. Collective dynamics of “small world networks. Nature 393: 440–442.

    Article  CAS  Google Scholar 

  147. Webb, L.J., Tracey, J.G., Williams, W.T. and Lance, G.N. 1967. Studies in the numerical analysis of complex rain-forest communities I. A comparison of methods applicable to site/species data. J. Ecol. 55: 171–191.

    Article  Google Scholar 

  148. Werger, M.J.A. and Sprangers, J.Th.M.C. 1982. Comparison of floristic and structural classification of vegetation Vegetatio 50: 175–183.

    Article  Google Scholar 

  149. Whewell, W. 1847. The Philosophy of the Inductive Sciences. Johnson Reprint Co., New York.

    Google Scholar 

  150. Wille, R. 1989. Knowledge acquisition by methods of formal concept analysis. In: Diday, E. (ed.), Data Analysis, Learning Symbolic and Numerical Knowledge. Nova Science, New York - Budapest, pp. 365–380.

    Google Scholar 

  151. Williams, W.T. and Lambert, J.M. 1959. Multivariate methods in plant ecology I. Association analysis in plant communities. J. Ecol. 47: 83–101.

    Article  Google Scholar 

  152. Williams, W.T., Lance, G.N., Webb, L.J., Tracey, J.G. and Dale, M.B. 1969. Studies in the numerical classification of complex rain-forest communities VI. The analysis of successional data. J. Ecol. 57: 515–535.

    Article  Google Scholar 

  153. Wittgenstein, L. 1921. Tractatus Logico-Philosophicus. Annalen der Naturphilosophie 5: 36–51.

    Google Scholar 

  154. Wong, W., Liu, W. and Bennamon, M. 2011. Ontology learning and knowledge discovery using the web: challenges and recent advances. Information Science Reference, Hershey, PA.

    Book  Google Scholar 

  155. Wyndham, M.P. 1985. Numerical classification of proximity data with assignment measures. J. Classif. 2: 157–172.

    Article  Google Scholar 

  156. Wyse, N., Dubes, R. and Jain, A. K. 1980. A critical evaluation of intrinsic dimensionality algorithms. In: Gelsema, E.S. and Kanal, L.N. (eds.), Pattern Recognition in Practice. North Holland, Amsterdam, pp. 415–425.

    Google Scholar 

  157. Yu, S. and Shi, J. 2003. Multiclass spectral clustering. Proceedings IEEE International Conference Computer Vision. pp. 313–319.

  158. Zadeh, L.A. 1965. Fuzzy sets. Information and Control 8: 338–353.

    Article  Google Scholar 

  159. Zelnik-Manor, L. and Perona, P. 2005. Self-tuning spectral clustering. Advances in Neural Information Processing Systems 17: 1601–1608.

    Google Scholar 

  160. Zhang, K. and Kwok, J.T. 2010. Clustered Nystrom method for large scale manifold learning and dimension reduction. IEEE Transactions on Neural Networks 21: 1576–1587.

    Article  Google Scholar 

  161. Zhang, Y. and Li, T. 2011. Consensus clustering + meta clustering = multiple consensus clustering. Proceedings 24th International Florida Artificial Intelligence Research Society Conference. pp. 81–86.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. B. Dale.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Dale, M.B. Compression and knowledge discovery in ecology. COMMUNITY ECOLOGY 14, 196–207 (2013). https://doi.org/10.1556/ComEc.14.2013.2.10

Download citation

Keywords

  • Clustering
  • Knowledge discovery
  • Compression
  • Modelling
  • Minimum message length