Advertisement

Community Ecology

, Volume 14, Issue 1, pp 67–76 | Cite as

Arbuscular mycorrhizal colonisation of roots of grass species differing in invasiveness

  • G. EndreszEmail author
  • I. Somodi
  • T. Kalapos
Article

Abstract

Recent research indicates that the soil microbial community, particularly arbuscular mycorrhizal fungi (AMF), can influence plant invasion in several ways. We tested if 1) invasive species are colonised by AMF to a lower degree than resident native species, and 2) AMF colonisation of native plants is lower in a community inhabited by an invasive species than in an uninvaded resident community. The two tests were run in semiarid temperate grasslands on grass (Poaceae) species, and the frequency and intensity of mycorrhizal colonisation, and the proportion of arbuscules and vesicles in plant roots have been measured. In the first test, grasses representing three classes of invasiveness were included: invasive species, resident species becoming abundant upon disturbance, and non-invasive native species. Each class contained one C3 and one C4 species. The AMF colonisation of the invasive Calamagrostis epigejos and Cynodon dactylon was consistently lower than that of the non-invasive native Chrysopogon gryllus and Bromus inermis, and contained fewer arbuscules than the post-disturbance dominant resident grasses Bothriochloa ischaemum andBrachypodiumpinnatum. The C3 and C4 grasses behaved alike despite their displaced phenologies in these habitats. The second test compared AMF colonisation for sand grassland dominant grasses Festuca vaginata and Stipa borysthenica in stands invaded by either C. epigejos or C. dactylon, and in the uninvaded natural community. Resident grasses showed lower degree of AMF colonisation in the invaded stand compared to the uninvaded natural community with F. vaginata responding so to both invaders, while S. borysthenica responding to C. dactylon only. These results indicate that invasive grasses supposedly less reliant on AMF symbionts have the capacity of altering the soil mycorrhizal community in such a way that resident native species can establish a considerably reduced extent of the beneficial AMF associations, hence their growth, reproduction and ultimately abundance may decline. Accumulating evidence suggests that such indirect influences of invasive alien plants on resident native species mediated by AMF or other members of the soil biota is probably more the rule than the exception.

Keywords

Arbuscular mycorrhizal fungi Calamagrostis epigejos Cynodon dactylon Grasses Invasive plants Semiarid temperate grassland 

Abbreviations

AMF

Arbuscular Mycorrhizal Fungi

a%

percentage arbuscule occurrence of the AMF colonised root section

A%

percentage arbuscule occurrence of the whole root

F%

frequency of root segments colonised by AMF

M%

intensity of mycorrhizal colonisation

v%

percentage vesicle occurrence of the AMF colonised root section

V%

percentage vesicle occurrence of the whole root

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2013_14010067_MOESM1_ESM.pdf (103 kb)
Supplementary material, approximately 105 KB.

References

  1. Barto, K., C. Friese and D. Cipollini. 2010. Arbuscular mycorrhizal fungi protect a native plant from allelopathic effects of an invader. J. Chem. Ecol. 36: 351–360.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Batten, K.M., K.M. Scow, K.F. Davies and S.P. Harrison. 2006. Two invasive plants alter soil microbial community composition in serpentine grasslands. Biol. Invasions 8: 217–230.CrossRefGoogle Scholar
  3. Bever, J.D. 2002a. Host-specificity of AM fungal population growth rates can generate feedback on plant growth. Plant and Soil 244: 281–290.CrossRefGoogle Scholar
  4. Bever, J.D. 2002b. Negative feedback within a mutualism: host-specific growth of mycorrhizal fungi reduces plant benefit. Proc. Royal Soc., Lond., Ser. B 269: 2595–2601.CrossRefGoogle Scholar
  5. Bever, J.D., I.A. Dickie, E. Facelli, J.M. Facelli, J. Klironomos, M. Moora, M.C. Rillig, W.D. Stock, M. Tibbett, and M. Zobel. 2010. Rooting theoriesof plant community ecology in microbial interactions. Trends Ecol. Evol. 25(8):468–478.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Blossey, B. and R. Nötzold. 1995. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J. Ecol. 83: 887–889.CrossRefGoogle Scholar
  7. Bossdorf, O., H. Auge, L. Lafuma, W.E. Rogers, E. Siemann and D. Prati. 2005. Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144: 1–11.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bray, S. and K. Kitajima. 2003. Mycorrhizae differentially alter growth, physiology, and competitive ability of an invasive shrub. Ecol. Appl. 13: 565–574.CrossRefGoogle Scholar
  9. Brundrett, M. 1991. Mycorrhizas in natural ecosystems. Adv. Ecol. Res. 21: 171–313.CrossRefGoogle Scholar
  10. Busby, R.R, M. W. Paschke, M.E. Stromberger and D. L. Gebhart. 2012. Seasonal variation in arbuscular mycorrhizal fungi root colonization of cheatgrass (Bromus tectorum), an invasive winter annual. J. Ecosyst. Ecogr. S8: 001.Google Scholar
  11. Cabello, M.M. 1997. Hydrocarbon pollution: its effect on native ar-buscular mycorrhizal fungi (AMF). FEMS Microbiol. Ecol. 22: 233–236.CrossRefGoogle Scholar
  12. Callaway, R.M., D. Cippolini, K. Barto, G.C. Thelen, S.G. Hallett, D. Prati, K. Stinson and J.N. Klironomos. 2008. Novel weapons: invasive plant supresses fungal mutualists in America but not in its native Europe. Ecology 89: 1043–1055.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Callaway, R.M. and W. Ridenour. 2004. Novel weapons: invasive success and the evolution of increased competitive ability. Frontiers in Ecol. Env. 2: 436–443.CrossRefGoogle Scholar
  14. Carey, J.R., M.J. Marler and R.M. Callaway. 2004. Mycorrhizae transfer carbon from a native grass to an invasive weed: evidence from stable isotopes and physiology. Plant Ecol. 172: 133–141.CrossRefGoogle Scholar
  15. Davis, M.A., J.P. Grime and K. Thompson. 2000. Fluctuating resources in plant communities: a general theory of invasibility. J. Ecol. 88: 528–534.CrossRefGoogle Scholar
  16. Davison, J., M. Öpik, M. Zobel, M. Vasar, M. Metsis, and M. Moora. 2012. Communities of arbuscular mycorrhizal fungi detected in forest soil are spatially heterogeneous but do not vary throughout the growing season. PLoS ONE 7(8): e41938.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Douds, D.D., C.R. Johnson and K.E. Koch. 1988. Carbon cost of the fungal symbiont relative to net leaf P accumulation in a split-root VA mycorrhizal symbiosis. Plant Physiol. 86: 491–496.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Emery, S.M. and J.A. Rudgers. 2012. Impact of competition and my-corrhizal fungi on growth of Centaurea stoebe, an invasive plant of sand dunes. Amer. Midland Nat. 167: 213–222.CrossRefGoogle Scholar
  19. Endresz, G., Á. Zöld-Balogh, and T. Kalapos. 2005. Local distribution pattern of Brachypodium pinnatum (Poaceae) - Field experiments in xeric loess grassland in N. Hungary. Phyton 45(2):249–265.Google Scholar
  20. Faraway, J.J. 2002. Linear Models With R. Texts in Statistical Science. Chapman & Hall/CRC, New York.Google Scholar
  21. Fitter, A. 2005. Darkness visible: reflections on underground ecology. J. Ecol. 93: 231–243.CrossRefGoogle Scholar
  22. Fox, J. and S. Weisberg. 2011. An {R} Companion to Applied Regression. Second Edition. Thousand Oaks CA: Sage. URL: http://socserv.socsci.mcmaster.ca/jfox/Books/CompanionGoogle Scholar
  23. Fumanal, B., C. Plenchette, B. Chauvel, and F. Bretagnolle. 2006. Which role can arbuscular mycorrhizal fungi play in the facilitation of Ambrosia artemisiifolia L. invasion in France? Mycor-rhiza 17: 25–35.CrossRefGoogle Scholar
  24. Goodwin, J. 1992. The role of mycorrhizal fungi in competitive interactions among native bunchgrasses and alien weeds: A review and synthesis. Northwest Sci. 66: 251–260.Google Scholar
  25. Grace, C. and D.P. Stribley. 1991. A safer procedure for routine staining of vesicular arbuscular mycorrhizal fungi. Mycol. Res. 95: 1160–1162.CrossRefGoogle Scholar
  26. Graphpad Prism v.5.04 2007. GraphPad Software, San Diego California USA, www.graphpad.com.Google Scholar
  27. Greipsson, S. and A. DiTommaso. 2006. Invasive non-native plants alter the occurrence of arbuscular mycorrhizal fungi and benefit from this association. Ecol. Restoration 24: 236–241.CrossRefGoogle Scholar
  28. Hale, A., S.J. Tonsor and S. Kalisz. 2011. Testing the mutualism disruption hypothesis: physiological mechanisms for invasion of intact perennial plant communities. Ecosphere 2: 110.CrossRefGoogle Scholar
  29. Hawkes, C.W., J. Belnap, C. D’Antonio and M.K. Firestone. 2006. Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses. Plant and Soil 281: 369–380.CrossRefGoogle Scholar
  30. Hierro, J.L., J.L. Maron and R.M. Callaway. 2005. A biogeographi-cal approach to plant invasions: the importance of studying exotics in their introduced and native range. J. Ecol. 93: 5–15.CrossRefGoogle Scholar
  31. Holm, L.G., D.L. Plucknett, J.V. Pancho and J.P. Herberger. 1977. The World’s Worst Weeds. Distribution and Biology. Univ. Press of Hawaii, Honolulu, Hawaii.Google Scholar
  32. Kalapos, T. 1991. C3 and C4 grasses of Hungary: environmental requirements, phenology and role in the vegetation. Abstracta Bot. 15: 83–88.Google Scholar
  33. Keane, R.M. and M.J. Crawley. 2002. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17: 164–170.CrossRefGoogle Scholar
  34. Klironomos, J. 2000. Host-specificity and functional diversity among arbuscular mycorrhizal fungi. In: Bell, C.R., M. Brylin-ski and P. Johnson-Green. (eds.) Microbial Biosystems: New Frontiers. Proceedings of the 8th International Symposium of Microbial Ecology, Halifax, NS, Canada. Atlantic Canada Society for Microbial Ecology. pp. 845–851.Google Scholar
  35. Klironomos, J.N. 2002. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417: 67–70.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Klironomos, J. 2003. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84: 2292–2301.CrossRefGoogle Scholar
  37. Kourtev, P., J. Ehrenfeld and M. Häggblom. 2002. Exotic plant species alter the microbial community structure and function in the soil. Ecology 83: 3152–3166.CrossRefGoogle Scholar
  38. Kovács, M.G. and I. Bagi. 2001. Mycorrhizal status of plants in a mixed deciduous forest from the Great Hungarian Plain with special emphasis on the potential mycorrhizal partners of Ter-fezia terfezioides (Matt.) Trappe (Pezizales). Phyton 161–168.Google Scholar
  39. Kovács, M.G. and Cs. Szigetvári. 2002. Mycorrhizae and other root-associated fungal structures of the plants of a sandy grassland on the Great Hungarian Plain. Phyton 42: 211–223.Google Scholar
  40. Kovács-Láng, E. 1970. Fractional humus investigation of soils under sward communities (Festucetum vaginatae danubiale, Fes-tucetum wagneri) growing on sandy sites. Annales Universitatis Scientiarum Budapestiensis, Sectio Biologica 12: 163–170.Google Scholar
  41. Lingfei, L., Y. Anna and Z. Zhiwei. 2005. Seasonality of arbuscular mycorrhizal symbiosis and dark septate endophytes in a grassland site in southwest China. FEMS Microbiol. Ecol. 54: 367–373.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lugo, M.A, M.E. González Maza and M.N. Cabello. 2003. Arbus-cular mycorrhizal fungi in a mountain grassland II: Seasonal variation of colonization studied, along with its relation to grazing and metabolic host type. Mycologia 95: 407–415.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Marler, M.J., C.A. Zabinski and R.M. Callaway. 1999. Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology 80: 1180–1186.CrossRefGoogle Scholar
  44. Meinhardt, K.A. and C.A. Gehring. 2012. Disrupting mycorrhizal mutualisms: a potential mechanism by which exotic tamarisk outcompetes native cottonwoods. Ecol. Appl. 22: 532–549.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Merryweather, J. and A.H. Fitter. 1998. The arbuscular mycorrhizal fungi of Hyacinthoides non-scripta II. Seasonal and spatial patterns of fungal populations. New Phytol. 138: 131–142.CrossRefGoogle Scholar
  46. Mitchell, C.E., A.A. Agrawal, J.D. Bever, G.S. Gilbert, R.A. Huf-bauer, J.N. Klironomos, J.L. Maron, W.F. Morris, I.M. Parker, A.G. Power, E.W. Seabloom, M.E. Torchin and D.P. Vázquez 2006. Biotic interactions and plant invasions. Ecol. Lett. 9: 726–740.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Mihály, B. and A. Demeter. 2003. Invasive Alien Species in Hungary. National Ecological Network Vol. 6. Authority for Nature Conservation, Ministry of Environment and Water, Budapest.Google Scholar
  48. Moles, A., M. Gruber and S. Bonser. 2008. A new framework for predicting invasive plant species. J. Ecol. 96: 13–17.Google Scholar
  49. Molnár, Zs., M. Bíró, S. Bartha and G. Fekete. 2012. Past trends, present state and future prospects of Hungarian forest-steppes. In: Werger, M.J.A. and M.A. van Staalduinen (eds.) Eurasian Steppes. Ecological Problems and Livelihoods in a Changing World. Plant and Vegetation, vol. 6. Springer, Dordrecht. pp. 209–252.CrossRefGoogle Scholar
  50. Mummey, D.L., M.C. Rillig and W.E. Holben. 2005. Neighboring plant influences on arbuscular mycorrhizal fungal community composition as assessed by T-RFLP analysis. Plant and Soil 271: 83–90.CrossRefGoogle Scholar
  51. Niu, H.-b., W.-X. Liu, F.-H. Wan and B. Liu. 2007. An invasive aster (Ageratina adenophora) invades and dominates forest un-derstories in China: altered soil microbial communities facilitate the invader and inhibit natives. Plant and Soil 294: 73–85.CrossRefGoogle Scholar
  52. Pringle, A., J.D. Bever, M. Gardes, J.L. Parrent, M.C. Rillig and J.N. Klironomos. 2009. Mycorrhizal symbioses and plant invasions. Annu. Rev. Ecol. Syst. 40: 699–715.CrossRefGoogle Scholar
  53. Quinn, G.P. and J.M. Keough. 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, New York.CrossRefGoogle Scholar
  54. R Development Core Team 2009. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.Google Scholar
  55. Reinhart, K.O. and R.M. Callaway. 2006. Soil biota and invasive plants. New Phytol. 170: 445–457.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Richardson, D.M., N. Allsopp, C.M. D’Antonio, S.J. Milton and M. Rejmánek. 2000. Plant invasions - the role of mutualism. Biol. Rev. 75: 65–93.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Roberts, K.J. and R.C. Anderson. 2001. Effect of garlic mustard [Al-liaria petiolata (Beib. Cavara & Grande)] extracts on plants and arbuscular mycorrhizal (AM) fungi. Amer. Midland Nat. 146: 146–152.CrossRefGoogle Scholar
  58. Rydlová, J. and M. Vosátka. 2001. Associations of dominant plant species with arbuscular mycorrhizal fungi during vegetation development on coal mine spoil banks. Folia Geobot. 36: 85–97.CrossRefGoogle Scholar
  59. Sanon, A., Beguiristain, T., Cébron, A., J. Berthelin, S.N. Sylla and R. Duponnois. 2012. Differencesinnutrient availability and my-corrhizal infectivity in soils invaded by an exotic plant negatively influence the development of indigenous Acacia species. J. Env. Manage. 95: S275–S279.CrossRefGoogle Scholar
  60. Sánchez-Castro, I., N. Ferrol, P. Cornejo and J.-M. Barea. 2012. Temporal dynamics of arbuscular mycorrhizal fungi colonizing roots of representative shrub species in a semi-arid Mediterranean ecosystem. Mycorrhiza 22: 449–460.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Seifert, E.K., J.D. Bever and J.L. Maron. 2009. Evidence for the evolution of reduced mycorrhizal dependence during plant invasion. Ecology 90: 1055–1062.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Shah, M.A., Z.A. Reshi and D. Khasa. 2009a. Arbuscular mycorrhi-zal status of some Kashmir Himalayan alien invasive plants. Mycorrhiza 20: 67–72.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Shah, M.A., Z.A. Reshi and D.P. Khasa. 2009b. Arbuscular mycor-rhizas: drivers or passengers of alien plant invasion. Bot. Rev. 75: 397–417.CrossRefGoogle Scholar
  64. Simberloff, D. and B.V. Holle. 1999. Positive interactions of nonin-digenous species: invasional meltdown? Biol. Conserv. 1: 21–32.Google Scholar
  65. Somodi, I., K. Virágh and J. Podani. 2008. The effect of the expansion of the clonal grass Calamagrostis epigejos on the species turnover of a semi-arid grassland. Appl. Veg. Sci. 11: 187–192.CrossRefGoogle Scholar
  66. Stampe, E.D. and C. Daehler. 2003. Mycorrhizal species identity affects plant community structure and invasion: a microcosm study. Oikos 100: 362–372.CrossRefGoogle Scholar
  67. Stinson, K.A., S.A. Campbell, J.R. Powell, B.E. Wolfe, R.M. Cal-laway, G.C. Thelen, S.G. Hallett, D. Prati and J.N. Klironomos. 2006. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol. 4: e140.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Terpó, A., M. Zajac and A. Zajac. 1999. Provisional list of Hungarian archaeophytes. Thaiszia - Journal of Botany 9: 41–47Google Scholar
  69. Trouvelot, A., J.L. Kough and V. Gianinazzi-Pearson. 1986. Mesure du taux de mycorhization VA d’un systéme radiculare. Recherche de méthodes d’estimation ayant une signification fonc-tionelle. In: Mycorrhizae: Physiology and Genetics - Les mycorhizes: physiologie et génétique. Proceedings of the 1st ESM/1er SEM, Dijon, 1–5 July 1985.-INRA, Paris, pp. 217–221.Google Scholar
  70. Turnau, K., T. Anielska, P. Ryszka, S. Gawronski, B. Ostachowicz and A. Jurkiewicz. 2008. Establishment of arbuscular mycorrhi-zal plants originating from xerothermic grasslands on heavy metal rich industrial wastes–new solution for waste revegeta-tion. Plant and Soil 305: 267–280.CrossRefGoogle Scholar
  71. Tutin T.G., V.H. Heywood, N.A. Burges, D.M. Moore, D.H. Valentine, S.M. Walters, and D.A. Webb (eds). 1964–1993. Flora Europaea, Vols. 1–5. Cambridge University Press, Cambridge, UK.Google Scholar
  72. van der Heijden, M., T. Boller and A. Wiemken. 1998. Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79: 2082–2091.CrossRefGoogle Scholar
  73. van der Putten, W.H., G.A. Kowalchuk, E.P. Brinkman, G.T.A. Doodeman, R.M. van der Kaaij, A.F.D. Kamp, F.B.J. Menting and E.M. Veenendaal. 2007. Soil feedback of exotic savanna grass relates to pathogen absence and mycorrhizal selectivity. Ecology 88: 978–988.CrossRefPubMedPubMedCentralGoogle Scholar
  74. van der Staaij, J., A. Rozema, A. van Beem and E. Aerts. 2001. Increased solar UV-B radiation may reduce infection by arbuscu-lar mycorrhizal fungi (AMF) in dune grassland plants: evidence from five years of field exposure. Plant Ecol. 154: 171–177.Google Scholar
  75. Vilà M. and J. Weiner. 2004. Are invasive plant species better competitors than native plant species? - evidence from pair-wise experiments. Oikos 105: 229–238.CrossRefGoogle Scholar
  76. Vogelsang K.M., J.D. Bever, M.S.P. Griswold and P.A. Schultz. 2004. The Use of Mycorrhizal Fungi in Erosion Control Applications. California Department of Transportation, Sacramento, CA, USA.Google Scholar
  77. Vogelsang, K.M. and J.D. Bever. 2009. Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology 90: 399–407.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Wang, B. and Y.-L. Qiu. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16: 299–363.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Wilson, G.W., K.R. Hickman and M.M. Williamson. 2012. Invasive warm-season grasses reduce mycorrhizal root colonization and biomass production of native prairie grasses. Mycorrhiza 22: 327–336.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Wolfe, B.E. and J.N. Klironomos. 2005. Breaking new ground: soil communities and exotic plant invasion. BioScience 55: 477–487.CrossRefGoogle Scholar
  81. Wolfe, B. E., V.L. Rodgers, K.A. Stinson and A. Pringle. 2008. The invasive plant Alliaria petiolata (garlic mustard) inhibits ec-tomycorrhizal fungi in its introduced range. J. Ecol. 16: 777–783.CrossRefGoogle Scholar
  82. Zabinski, C.A., L. Quinn and R.M. Callaway. 2002. Phosphorus uptake, not carbon transfer, explains arbuscular mycorrhizal enhancement of Centaurea maculosa in the presence of native grassland species. Funct. Ecol. 16: 758–765.CrossRefGoogle Scholar
  83. Zeileis, A. 2004. Econometric computing with HC and HAC covari-ance matrix estimators. J. Stat. Software 11: 1–17.CrossRefGoogle Scholar
  84. Zeileis, A. 2006. Object-oriented computation of sandwich estimators. J. Stat. Software 16: 1–16.CrossRefGoogle Scholar
  85. Zhang, Q., L.J. Yao, L.Y. Yang, J.J. Tang and X. Chen. 2007. Potential allelopathic effects of an invasive species Solidago canaden-sis on the mycorrhizae of native plant species. Allelopathy J. 20: 71–78.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2013

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Plant Systematics, Ecology and Theoretical BiologyInstitute of Biology, Eötvös Loránd UniversityBudapestHungary
  2. 2.MTA Centre for Ecological ResearchInstitute of Ecology and BotanyVácrátótHungary

Personalised recommendations