Advertisement

Community Ecology

, Volume 14, Issue 1, pp 8–17 | Cite as

Microhabitat heterogeneity in temperate forests: is distance to stems affecting ground-dwelling spider communities?

  • T. M. ZiescheEmail author
  • M. Roth
Article

Abstract

Spiders contribute essentially to the arthropod community of forests and are known to be distributed in non-random pattern according to environmental, structural, competitive, and predacious conditions. The aim of the study was to investigate the effects of the distance to trees on the distribution pattern of soil-dwelling spiders. We verified the hypothesis that stem-close and stem-distant microhabitats differ with respect to taxonomical and ecological characteristics of spider assemblages, hence, functional significance on a small spatial scale. Ground-dwelling spiders were collected with pitfall traps in positions close (20-30 cm) and distant (2 m) to the stem bases in mature forests of different stand types (spruce, Douglas fir, beech-spruce, oak-beech). To identify significant drivers of spider assemblage composition, environmental parameters were assessed in relation with the arrangement of pitfall traps. The study documented significant variability in the composition of spider assemblages of stem-close and stem-distant pitfall traps within each of the study sites. The position of traps strongly affected species richness, species composition, activity density, and dominance structure. Thus, sampling at both positions revealed that the species richness of spiders is spatially restricted. Moreover, spider assemblage structure differed in the classification of species to size and ecological preference. Those results implicate potential consequences for their functional role in forests in relation to the distance to the trees.

Keywords

Araneae Beech-spruce Douglas fir Forest ecosystems Oak-beech Pitfall traps Small-scale distribution Spruce 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26: 32–46.Google Scholar
  2. Anderson, M.J. 2004. DISTMLM v.5: a FORTRAN computer program to calculate a distance-based multivariate analysis for a linear model. Department of Statistics, University of Auckland, New Zealand.Google Scholar
  3. Begon, M.E, Harper, JL and Townsend, C.R. 1996. Ecology, 3rd ed. Blackwell Science, Oxford.Google Scholar
  4. Berg, M.P. and Bengtsson, J. 2007. Temporal and spatial variability in soil food web structure. Oikos 116: 1789–1804.Google Scholar
  5. Boettcher, S.E. and Kalisz, P.J. 1990. Single-tree influence on soil properties in the mountains of Eastern Kentucky. Ecology 71: 1365–1372.Google Scholar
  6. Bonn, A. and Schröder, B. 2001. Habitat models and their transfer for single and multi species groups: a case study of carabids in an alluvial forest. Ecography 24: 483–496.Google Scholar
  7. Bray, J.R. and Curtis, J.T., 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 325–349.Google Scholar
  8. Bultman, T.L., Uetz, G.W. and Brady, A.R. 1982. A comparison of cursorial spider communities along a successional gradient. J. Arachnol. 10: 23–33.Google Scholar
  9. Bultmann, T.L. and Uetz, G.W. 1984. Effect of structure and nutritional quality of litter on abundances of litter-dwelling arthropods. Am. Midl. Nat. 111 (11):165–172.Google Scholar
  10. Castro, A. and Wise, D.H. 2009. Influence of fine woody debris on spider diversity and community structure in forest leaf litter. Biodivers. Conserv. 18 (14):3705–3731.Google Scholar
  11. Chen, B.R. and Wise, D.H. 1999. Bottom-up limitation of preda-ceous arthropods in a detritus-based terrestrial food web. Ecology 80: 761–772.Google Scholar
  12. Churchill, T.B. and Arthur, M. 1999. Measuring spider richness: effects of different sampling methods and spatial and temporal scales. J. Ins. Conserv. 3: 287–295.Google Scholar
  13. Dajoz, R. 2000. Insects and Forests. The Role and Diversity of Insects in Forest Environment. Lavoisier Publishing, Paris.Google Scholar
  14. Deschaseaux, A. and Ponge, J.F. 2001. Changes in the composition of humus profiles near the trunk base of an oak tree [Quercus petraea (Mattus.) Liebl.]. Eur. J. Soil Biol. 37: 9–16.Google Scholar
  15. Dufrêne, M. and Legendre, P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monographs 67(3):345–366.Google Scholar
  16. Erdmann, G., Floren, A., Linsenmair, K.E., Scheu, S. and Maraun, M. 2006. Little effect of forest age on oribatid mites on the bark of trees. Pedobiologia 50: 433–441.Google Scholar
  17. Frank, J.H. 1967. The insects predators of pupal stage of the winter moth, Operophtera brumata (L.) (Lepidoptera: Hydriomeni-dae). J. Anim. Ecol. 36: 375–389.Google Scholar
  18. Frick, H., Nentwig, W. and Kropf, C. 2007. Influence of stand-alone trees on epigeic spiders (Araneae) at the Alpine timberline. An. Zool. Fenn. 44(11):43–57.Google Scholar
  19. Hatley, C.L. and Macmahon, J.A. 1980. Spider community organization: Seasonal variation and the role of vegetation architecture. Environ. Entomol. 9: 632–639.Google Scholar
  20. Heimer, S. and Nentwig W. 1991. Spinnen Mitteleuropas: ein Bes-timmungsbuch. Berlin, Hamburg, Parey. p. 543.Google Scholar
  21. Hendrickx, F. and Maelfait, J.-P. 2003. Life cycle, reproductive patterns and their year to year variation in a field population of the wolf spider Pirata piraticus (Araneae, Lycosidae). J. Arachnol. 31: 331–339.Google Scholar
  22. Hill, M.O. 1979. TWINSPAN - A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and the attributes. Ithaka, Cornell University.Google Scholar
  23. Hornschuch, F. and Riek, W. 2009. Bodenheterogenität als Indikator von Naturnähe? 2. Biotische und abiotische Diversität in Natur-und Wirtschaftswäldern Brandenburgs und Nordwest-Polens. Waldökologie, Landschaftsforschung Naturschutz und 7: 55–82. http://afsv.de/download/literatur/waldoekologie-online/waldoekologie-online_heft-7-3.pdf.Google Scholar
  24. Huhta, V. 1971. Succession in the spider communities of the forest floor after clear-cutting and prescribed burning. An. Zool. Fenn. 8: 483–542.Google Scholar
  25. Langellotto, G.A. and Denno, R.F. 2004. Responses of invertebrate natural enemies to complex-structured habitats: a meta-analyti-cal synthesis. Oecologia 139: 1–10.PubMedGoogle Scholar
  26. Legendre, P., Dale, M.R.T., Fortin, M.-J., Gurevitch, J., Hohn, M. and Myers, D. 2002. The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography 25: 601–615.Google Scholar
  27. Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., Holt, R.D., Shurin, J.B., Law, R., Tilman, D., Loreau, M. and Gonzalez, A. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7: 601–613.Google Scholar
  28. Lensing, J.R., Todd, S. and Wise, D.H. 2005. The impact of altered precipitation on spatial stratification and activity-densities of springtails (Collembola) and spiders (Araneae). Ecol. Entomol. 30: 194–200.Google Scholar
  29. Leps, J. and Smilauer, P. 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge, UK.Google Scholar
  30. Majunke, C., Böhme, R. and Haffelder, M. 1999. Entwicklung eines standartisierten Verfahrens zur gesicherten überregionalen Prognose von Massenvermehrungen der bestandesbedrohenden Schadinsekten an Kiefer als Bestandteil eines integrierten Bekämpfungskonzeptes. (final report unpubl. BMBF: AZ 514-33.64/94HSO19).Google Scholar
  31. Marc, P., Canard, A. and Ysnel, F. 1999. Spiders (Araneae) useful for pest limitation and bioindication. Agr. Ecosyst. Environ. 74: 229–273.Google Scholar
  32. Marshall, S.D. and Rypstra, A.L. 1999. Spider competition in structurally simple ecosystems. J. Arachnol. 27:343–350.Google Scholar
  33. Martin, D. 1991. Zur Autökologie der Spinnen (Arachnida: Araneae) I. Charakteristik der Habitatausstattung und Präferenzverhalten epigäischer Spinnenarten. Arachnol. Mitt. 1: 5–26.Google Scholar
  34. Maurer, R. and Hänggi, A. 1990. Katalog der Schweizerischen Spin-nen. Doc. Faun. Helv. 12: 6–31.Google Scholar
  35. McArdle, B.H. and Anderson, M.J. 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82: 290–297.Google Scholar
  36. McNett, B.J. and Rypstra, A.L. 2000. Habitat selection in a large orb-weaving spider: vegetational complexity determines site selection and distribution. Ecol. Entomol. 25: 423–432.Google Scholar
  37. Menyailo, O.V., Hungate, B.A. and Zech, W. 2002. The effect of single tree species on soil microbial activities related to C and N cycling in the Siberian artificial afforestation experiment. Plant Soil 242: 183–196.Google Scholar
  38. Mühlenberg, M. 1989. Freilandökologie. Heidelberg, Wiesbaden, Quelle & Meyer Verlag. p. 511.Google Scholar
  39. Nadkarni, N.M. and Parker, G.G. 1994. A profile of forest canopy science and scientists-who we are. Selbyana 15(2):38–50.Google Scholar
  40. Nentwig, W. 1982. Epigeic spiders, their potential prey and competitors: Relationship between size and frequency. Oecologia 55: 130–136.PubMedGoogle Scholar
  41. Nentwig, W. 1987. The prey of spiders. In: Nentwig, W. (ed.), Eco-physiology of Spiders. Springer Berlin. pp. 249–263.Google Scholar
  42. Nentwig, W., Hänggi, A., Kropf, C. and Blick, T. 2003. Spinnen Mitteleuropas/Central European Spiders. An internet identification key. http://www.araneae.unibe.ch. Version 03.2003.Google Scholar
  43. Niemelä, J. 1996. Invertebrates and boreal forest management. Con-serv. Biol. 11: 601–610.Google Scholar
  44. Niemelä, J., Haila, Y. and Punttila, P. 1996. The importance of small-scale heterogeneity in boreal forests: variation in diversity in forest-floor invertebrates across the succession gradient. Eco-graphy 19: 352–368.Google Scholar
  45. Nyffeler, M. 1999. Prey selection of spiders in the field. J. Arachnol. 27: 317–324.Google Scholar
  46. Oxbrough, A.G., Gittings, T., O’Halloran, J., Giller, P.A. and Smith, G.F. 2005. Structural indicator of spider communities across the forest plantation cycle. For. Ecol. Manage. 212: 171–183.Google Scholar
  47. Parker, G.G., O’Neil, J.P. and Higman, D. 1989. Vertical profile and canopy organization in a mixed deciduous forest. Vegetatio 85: 1–11.Google Scholar
  48. Pearce, J.L., Venier, L., Pedlar, J. and Mc Kenney 2005. Habitat islands, forest edge and spring-active invertebrate assemblages. Biol. Conserv. 14: 2949–2969.Google Scholar
  49. Platen, R., von Broen, B., Herrmann, A., Ratschker, U.M. and Sa-cher, P. 1999. Gesamtartenliste und Rote Liste der Webspinnen, Weberknechte und Pseudoskorpione des Landes Brandenburg (Arachnida: Araneae, Opiliones, Pseudoscorpiones) mit Anga-ben zur Häufigkeit und Ökologie. – Naturschutz und Land-schaftspflege in Brandenburg, 8 (2). Beiheft: 1–79.Google Scholar
  50. Platnick, N.I. 2011. The World Spider Catalog, Version 12. http://re-search.amnh.org/iz/spiders/catalog/.Google Scholar
  51. Prescott, C.E. 2002. The influence of forest canopy on nutrient cycling. Tree Physiology 22: 1193–1200.PubMedGoogle Scholar
  52. Reynolds, B.C. and Crossley, D.A. 1997. Spatial variation in her-bivory by forest canopy arthropods along an elevation gradient. Environ. Entomol. 26(6):1232–1239.Google Scholar
  53. Riechert, S.E. and Gillespie, R. 1986. Habitat choice and utilization in web building spiders. In: W. Shear (ed.), Spiders: Webs, Be-havour, and Evolution. Stanford Univ. Press, Stanford, California. pp. 23–49.Google Scholar
  54. Roberts, M.J. 1985. The Spiders of Great Britain and Ireland. Vol. 1 – Atypae to Theridioso matisae. Harley Books, Colchester.Google Scholar
  55. Roberts, M.J. 1987. The Spiders of Great Britain and Ireland. Vol. 2 - Linyphiidae. Harley Books, Colchester.Google Scholar
  56. Roberts, M.J. 1998. Spinnen gids. Tirion Uitgevers BV, Baarn.Google Scholar
  57. Scheffer, F. and Schachtschnabel, P. 1992. Lehrbuch der Bodenkunde. 13. Aufl., Enke Verlag, Stuttgart. p. 593.Google Scholar
  58. Scheu, S. and Poser, G. 1996. The soil macrofauna (Diplopoda, Isopoda, Lumbricidae and Chilopoda) near tree trunks in a beechwood on limestone: indications for stemflow induced changes in community structure. Appl. Soil Ecol. 3: 115–125.Google Scholar
  59. Schowalter, T.D., Hargrove, W.W., and Crossley, D.A. 1986. Her-bivory in forested ecosystems. Ann. Rev. Ent. 31: 177–196.Google Scholar
  60. Schwerdtfeger, F. 1949. Kampf dem Kiefernspinner. Einführung in die Lebensweise und Bekämpfung des Kiefernspinners (Den-drolimus pini L.). Neumann, Radebeul und Berlin.Google Scholar
  61. Shultz, B.J., Lensing, J.R. and Wise, D.H. 2006. Effects of altered precipitation and wolf spiders on the density and activity of forest-floor Collembola. Pedobiologia 50: 43–50.Google Scholar
  62. Spence, J.R. and Niemelä, J.K. 1994. Sampling carabid assemblages with pitfall traps: the madness and the method. Can. Entomol. 126: 881–894.Google Scholar
  63. Sunderland, K. and Samu, F. 2000. Effects of agricultural diversification on the abundance, distribution, and pest control potential of spiders: a review. Ent. Exp. Appl. 95: 1–13.Google Scholar
  64. Symstad, A.J., Siemann, E. and Haarstad, J. 2000. An experimental test of the effect of plant functional group diversity on arthropod diversity. Oikos 89: 243–253.Google Scholar
  65. Tilman, D. and Kareiva, P. 1997. Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions. Princeton Univ. Press.Google Scholar
  66. Toft, S. and Wise, D.H. 1999. Growth, development, and of a gener-alist predator fed single- and mixed-species diets of different quality. Oecologia 119: 191–197.PubMedGoogle Scholar
  67. Wagner, J.D. and Wise, D.H. 1997. Influence of prey availability and conspecifics on patch quality for a cannibalistic forager: laboratory experiments with the wolf spider Schizocosa. Oecologia 109: 474–482.PubMedGoogle Scholar
  68. Wagner, J.D., Toft, S. and Wise, D.H. 2003. Spatial stratification in litter depth by forest-floor spiders. J. Archnol. 31: 28–39.Google Scholar
  69. Waltz, A.M. and Whitham, T.G. 1997. Plant development affects arthropod communities: opposing impacts of species removal. Ecology 78: 2133–2144.Google Scholar
  70. Wise, D.H. 1993. Spiders in Ecological Webs. Cambridge Univ. Press, Cambridge.Google Scholar
  71. Wiehle, H. 1956. Spinnentiere oder Arachnoidea (Araneae). Linyphiidae–Baldachinspinnen. In: Dahl, M., Bischoff, H. (eds.), Die Tierwelt Deutschlands und der angrenzenden Meer-esteile, 44. Gustav Fischer, Jena.Google Scholar
  72. Wiehle, H. 1960. Spinnentiere oder Arachnoidea. (Araneae), XI: Mi-cryphantidae – Zwergspinnen. In: Dahl, M., H. Bishoff (eds.), Die Tierwelt Deutschlands und der angrenzenden Meeresteile, 44. Gustav Fischer, Jena.Google Scholar
  73. Ziesche, T.M. and Roth, M. 2008. Influence of environmental parameters on small-scale distribution of soil-dwelling spiders in forests: What makes the difference, tree species or microhabitat? For. Ecol. Manage. 255: 738–752.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2013

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Forest EcologyDevelopment and Monitoring, Center of Competence for ForestsEberswaldeGermany
  2. 2.Department of Forest ZoologyTechnical University DresdenTharandtGermany

Personalised recommendations