Advertisement

Community Ecology

, Volume 15, Issue 2, pp 194–204 | Cite as

The effect of small-scale land use on vegetation in the Valdivian Coastal Range (Chile)

  • K. SeisEmail author
  • S. Gärtner
  • P. J. Donoso
  • A. Reif
Article

Abstract

Today, native vegetation in the Valdivian Coastal Range (VCR) is restricted to areas where small-scale land use dominates resulting in a vegetation mosaic. This study (1) provides a description of the vegetation types (VT) within the vegetation mosaic, (2) identifies land use drivers that lead to either degradation or recovery processes and, (3) attempts to provide an explanation for the vegetation mosaic with a conceptual model. In two regions of the VCR we sampled 102 plots for composition of vegetation and indicators of livestock browsing, timber cutting and coppice forestry. We classified the vegetation using a flexible beta method and Bray-Curtis distance. Diagnostic species were identified by an extended indicator species analysis. The clustering results were visualized in NMDS and recursive partitioning was used to explain variations in the VTs as a function of the land use variables. Differentiating effects were tested using PERMANOVA and a conceptual model for the vegetation dynamics was developed from the results. Four VTs such as (1) extensively grazed non-native grasslands (EGN); (2), closed and semi-closed grazed Ugni and Berberis shrublands; (3) severely impacted evergreen forests; and (4) sparsely disturbed evergreen forests were recognized. The browsing indicators were important for differentiating the VTs. The EGN grasslands were differentiated by having more than 0.075 dung piles/m². Areas with fewer dung piles but direct browsing effects had the greatest impact on vegetation. Forests were preserved when the mean browsing index was equal to or lower than 0.5. The cutting frequency was significant in determining overall floristic composition. We showed that shrublands and evergreen forests within the vegetation mosaic and the result of small-scale farming led to high native forest species richness. This makes the vegetation mosaic especially valuable in a landscape dominated by exotic tree monocultures.

Keywords

Degradation Floristic composition Native forest species Small-scale anthropogenic disturbance Succession Valdivian evergreen rainforest Vegetation mosaic 

Abbreviations

EGN

extensively grazed non-native grasslands

NMDS

non-parametric multidimensional scaling

PERMANOVA

permutational multivariate analysis of variance

SDF

sparsely disturbed evergreen forest

SIE

severely impacted evergreen forests

UBS

closed and semi closed grazed Ugni and Berberis shrublands

VCR

Valdivian Coastal Range

VT

vegetation type

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2014_15020194_MOESM1_ESM.pdf (162 kb)
Supplementary material, approximately 166 KB.

References

  1. Amigo, J., Ramírez, C. and Quintanilla, L.G. 2007. Mantle communities of the temperate woodlands of South Central Chile: a phytosociological study of the order Aristotelietalia chilensis. Phytocoenologia 37:269–319.CrossRefGoogle Scholar
  2. Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26:32–46.Google Scholar
  3. Arbeitskreis Standortskartierung. 1996. Forstliche Standorts-aufnahme. 6th ed. IHW-Verlag, Eching.Google Scholar
  4. Armesto, J.J. 2002. Relevancia de las pequeñas áreas silvestres para la conservación de la biodiversidad en el bosque nativo. Ambiente y Desarrollo. 18:44–50.Google Scholar
  5. Armesto, J.J. 1998. Conservation targets in south American temperate forests. Science 282:1271–1272.CrossRefGoogle Scholar
  6. Armesto, J.J., Manuschevich, D., Mora, A., Smith-Ramirez, C., Rozzi, R., Abarzúa, A.M. and Marquet, P.A. 2010. From the Holocene to the Anthropocene: A historical framework for land cover change in southwestern South America in the past 15,000 years. Land Use Policy 27:148–160.CrossRefGoogle Scholar
  7. Armesto, J.J., Smith-Ramírez C. and Rozzi, R. 2001. Conservation strategies for biodiversity and indigenous people in Chilean forest systems. J. R. Soc. New Zealand 31:865–877.CrossRefGoogle Scholar
  8. Baudry, J. 1991. Ecological consequences of grazing extensification and land abandonment: Role of interactions between environment, society and techniques. Ciheam - Options Méditerranéennes 15:13–19.Google Scholar
  9. Chazdon, R.L. 2003. Tropical forest recovery: legacies of human impact and natural disturbances. Perspect. Plant Ecol. Evol. Syst. 6:51–71.CrossRefGoogle Scholar
  10. CIREN. 2001. Descripciones Suelos, materiales y símbolos. Estudio agrologico X Región. CIREN Centro de Información de Recursos Naturales (CIREN), Santiago de Chile.Google Scholar
  11. Clements, F.E. 1916. Plant Succession: An Analysis of the Development of Vegetation. Carnegie Institution, Washington.CrossRefGoogle Scholar
  12. Cornelissen, J.H.C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D.E., Reich, P.B., Steege, H., Morgan, H.D., Heijden, M.G.A. van der, Pausas, J.G. and Poorter, H. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51:335–.CrossRefGoogle Scholar
  13. De Cáceres, M. and Legendre, P. 2009. Associations between species and groups of sites: indices and statistical inference. Ecology 90: 3566–3574.CrossRefGoogle Scholar
  14. De Cáceres, M., Legendre, P. and Moretti, M. 2010. Improving indicator species analysis by combining groups of sites. Oikos 119:1674–1684.CrossRefGoogle Scholar
  15. Deutschewitz, K., Lausch, A., Kühn, I. and Klotz, S. 2003. Native and alien plant species richness in relation to spatial heterogeneity on a regional scale in Germany. Glob. Ecol. Biogeogr. 12:299–311.CrossRefGoogle Scholar
  16. Díaz, I.A., Sieving, K.E., Peña-Foxon, M.E., Larraín, J. and Armesto, J.J. 2010. Epiphyte diversity and biomass loads of canopy emergent trees in Chilean temperate rain forests: A neglected functional component. For. Ecol. Manage. 259:1490–1501.CrossRefGoogle Scholar
  17. Donoso, C. 1981. Tipos forestales de los bosques nativos de Chile. Publicacion FAO, Santiago de Chile.Google Scholar
  18. Dufrêne, M. and Legendre, P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67:345–366.Google Scholar
  19. Echeverría, C., Newton, A.C., Lara, A., Benayas, J.M.R. and Coomes, D.A. 2007. Impacts of forest fragmentation on species composition and forest structure in the temperate landscape of southern Chile. Glob. Ecol. Biogeogr. 16:426–439.CrossRefGoogle Scholar
  20. Ellenberg, H. and Leuschner, C. 2010. Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. 6th ed. Eugen Ulmer Verlag, Stuttgart.Google Scholar
  21. Foley, J.A. 2005. Global consequences of land use. Science 309:570–574.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Foster, D, and Motzkin, G. 1998. Ecology and conservation in the cultural landscape of New England: Lessons from nature’s history. Northeast Nat. 5:111–126.CrossRefGoogle Scholar
  23. Freiberg, M. 1997. Spatial and temporal pattern of temperature and humidity of a tropical premontane rain forest tree in Costa Rica. Selbyana 18:77–84.Google Scholar
  24. Fuenzalida, H. 1965. Clima. Geografia económica de Chile. Corparación de Fomento de la Produción (CORFO). 99–152.Google Scholar
  25. Gajardo, R. 1994. La vegetación natural de Chile: clasificación y distribución geográfica. Editorial Universitaria Santiago, Santiago de Chile.Google Scholar
  26. Godoy, R., Ramírez, C., Figueroa, H. and Hauenstein, E. 1981. Estudios ecosociologicos en pteridofitos de comunidades boscosas Valdivianas, Chile. Bosque 4:12–24.CrossRefGoogle Scholar
  27. Guariguata, M.R. and Ostertag, R. 2001. Neotropical secondary forest succession: changes in structural and functional characteristics. For. Ecol. Manage. 148:185–206.CrossRefGoogle Scholar
  28. Gutiérrez B., N., Gärtner, S., Gaviria R., J.C., Meier, W. and Reif, A. 2012. Successional vegetation patterns in abandoned pastures of the lower montane cloud forest zone in the Venezuelan Andes. Phytocoenologia 42:101–132.CrossRefGoogle Scholar
  29. Gutiérrez B., N., Gärtner, S., López H., J.Y., Pacheco, C.E. and Reif, A. 2013. The recovery of the lower montane cloud forest in the Mucujún watershed, Mérida, Venezuela. Reg. Environ. Change. Available from https://doi.org/link.springer.com/article/10.1007%2Fs10113-013-0413-y.
  30. Hietz, P., Wanek, W., Wania, R. and Nadkarni, N. 2002. Nitrogen-15 natural abundance in a montane cloud forest canopy as an indicator of nitrogen cycling and epiphyte nutrition. Oecologia 131:350–355.CrossRefPubMedGoogle Scholar
  31. Hildebrand, R. 1983. Die Vegetation der Tieflandsgebüsche des südchilenischen Lorbeerwaldes unter besonderer Berücksichtigung der Neophytenproblematik. Phytocoenologia 11:145–223.CrossRefGoogle Scholar
  32. Hildebrand-Vogel, R. 2002. Structure and dynamics of southern Chilean natural forests with special reference to the relation of evergreen versus deciduous elements. Fol. Geobot. 37:107–128.CrossRefGoogle Scholar
  33. Hobbs, R.J., Arico, S., Aronson, J., Baron, J.S., Bridgewater, P., Cramer, V.A., Epstein, P.R., Ewel, J.J., Klink, C.A., Lugo, A.E., Norton, D., Ojima, D., Richardson, D.M., Sanderson, E.W., Valladares, F., Vila, M., Zamora, R. and Zobel, M. 2006. Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob. Ecol. Biogeogr. 15:1–7.CrossRefGoogle Scholar
  34. Hothorn, T., Hornik, K., Van De Weil, M.A. and Zeileis, A. 2006a. A lego system for conditional inference. Amer. Stat. 60:257–263.CrossRefGoogle Scholar
  35. Hothorn, T., Hornik, K., and Zeileis, A. 2006b. Unbiased recursive partitioning: A conditional inference framework. J. Comput. Graph. Stat. 15:651–674.CrossRefGoogle Scholar
  36. Hothorn, T. and Zeileis, A. 2008. Generalized maximally selected statistics. Biometrics 64:1263–1269.CrossRefGoogle Scholar
  37. Lance, G.N. and Williams, W.T. 1967. A general theory of classificatory sorting strategies: 1. Hierarchical systems. Comput. J. 9:373–380.CrossRefGoogle Scholar
  38. Laurance, W.F., Ferreira, L.V., Merona, J.M.R. and Laurance, S.G. 1998. Rain forest fragmentation and the dynamics of Amazonian tree communities. Ecology 79:2032–2040.CrossRefGoogle Scholar
  39. Laurance, W.F., Nascimento, H.E.M., Laurance, S.G., Andrade, A.C., Fearnside, P.M., Ribeiro, J.E.L., Robson L. Capretz and Fearnside, P.M. 2006. Rain forest fragmentation and the proliferation of successional trees. Ecology 87:469–482.CrossRefPubMedGoogle Scholar
  40. Leyer, I. and Wesche, K. 2007. Multivariate Statistik in der Ökologie. Springer. Berlin.Google Scholar
  41. Londo, G. 1976. The decimal scale for releves of permanent quadrats. Vegetatio 33:61–64.CrossRefGoogle Scholar
  42. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. and Hornik, K. 2013. Cluster: cluster analysis basics and extensions, R Package Version 1144.Google Scholar
  43. McCune, B., Grace, J.B. and Urban, D.L. 2002. Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, OR.Google Scholar
  44. Menzies, N.K. 2007. Our Forest, your Ecosystem, their Timber: Communities, Conservation, and the State in Community-based Forest Management. Columbia University Press. New York.CrossRefGoogle Scholar
  45. Moorman, M.C., Peterson, N., Moore, S.E. and Donoso, P.J. 2013a. Stakeholder perspectives on prospects for co-management of an old-growth forest watershed near Valdivia, Chile. Soc. Nat. Resour. 1–15.Google Scholar
  46. Moorman, M., Donoso, P.J., Moore, S.E., Sink, S. and Frederick, D. 2013b. Sustainable protected area management: The case of Llancahue, a highly-valued periurban forest in Chile. J. Sustain. For. Available from https://doi.org/www.tandfonline.com/doi/full/10.1080/10549811.2013.803916#.Ub8FXZxHD2k.
  47. Myers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A. and Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853–858.PubMedPubMedCentralGoogle Scholar
  48. Neira, E., Verscheure, H. and Revenga, C. 2002. Chile’s frontier forests: conserving a global treasure. Global Forest Watch, World Resources Institute. Washington DC.Google Scholar
  49. Oberdorfer, E. 1960. Pflanzensoziologische Studien in Chile: Ein Vergleich mit Europa. J. Cramer. Weinheim.Google Scholar
  50. Olson, D.M. and Dinerstein, E. 1998. The Global 200: A representation approach to conserving the Earth’s most biologically valuable ecoregions. Conserv. Biol. 12:502–515.CrossRefGoogle Scholar
  51. Oksanen, J., Guillaume Blanchet, F., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Henry, M., Stevens, H. and Wagner, H. 2013. vegan: Community Ecology Package.Google Scholar
  52. Pliscoff, P., Tecklin, D., Farías, A. and Sáez, J. 2005. Análisis de paisaje de conservación para la Cordillera de la Costa de la Región de los Lagos. Com. Nac. Medio Ambiente (Conama), Valdivia.Google Scholar
  53. R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://doi.org/www.R-project.org/.Google Scholar
  54. Ramírez, C., San Martín, C., Verdugo, M. and Lorena, F. 1992. Malezas en plantaciones forestales de la cordillera costera del centro-sur de Chile. Ciencias Forestales 8:27–46.Google Scholar
  55. Ramírez, C., Moraga, M. and Figueroa, H. 1984. La similitud florística como medida de degradación antrópica del bosque valdiviano. Agro Sur 12:127–139.Google Scholar
  56. Ramírez, C. and San Martín, C. 2005. Asociaciones vegetales de la Cordillera de la Costa de la Región de Los Lagos. In: Smith-Ramírez, C., Armesto, J.J. and Valdovinos, C. (eds.), Historia, biodiversidad y ecología de los bosques costeros de Chile. Editorial Universitaria, Santiago de Chile. pp 206–223.Google Scholar
  57. Relva, M.A. and Veblen, T.T. 1998. Impacts of introduced large herbivores on Austrocedrus chilensis forests in northern Patagonia, Argentina. For. Ecol. Manage. 108:27–40.CrossRefGoogle Scholar
  58. Robson, N.K.B. 1985. Studies in the genus Hypericum L. (Guttiferae). 3. Sections 1. Campylosporus to 6a. Umbraculoides. Bull. Br. Mus. Nat. Hist. Bot. 12:163–325.Google Scholar
  59. Rojas, C., Pino, J., Basnou, C. and Vivanco, M. 2013. Assessing land-use and -cover changes in relation to geographic factors and urban planning in the metropolitan area of Concepción (Chile). Implications for biodiversity conservation. Appl. Geogr. 39:93–103.CrossRefGoogle Scholar
  60. Rouvinen, S., Kuuluvainen, T. and Karjalainen, L. 2002. Coarse woody debris in old Pinus sylvestris dominated forests along a geographic and human impact gradient in boreal Fennoscandia. Can. J. For. Res. 32:2184–2200.CrossRefGoogle Scholar
  61. Saldaña, A., Gianoli, E. and Lusk, C.H. 2005. Ecophysiological responses to light availability in three Blechnum species (Pteridophyta, Blechnaceae) of different ecological breadth. Oecologia 145:251–256.CrossRefGoogle Scholar
  62. Smith-Ramírez, C. and Armesto, J.J. 2002. Importancia biológica de los bosques costeros de la décima región: el impacto de la carretera costera sur. Ambiente y Desarrollo 18:6–14.Google Scholar
  63. Smith-Ramírez, C. 2004. The Chilean coastal range: a vanishing center of biodiversity and endemism in South American temperate rainforests. Biodivers. Conserv. 13:373–393.CrossRefGoogle Scholar
  64. Smith-Ramírez, C., Díaz, I, Pliscoff P. et al. 2006. Distribution patterns of flora and fauna in southern Chilean Coastal rain forests: Integrating Natural History and GIS. Biodivers. Conserv. 16:2627–2648.CrossRefGoogle Scholar
  65. Stohlgren, T.J., Falkner, M.B. and Schell, L.D. 1995. A modified-Whittaker nested vegetation sampling method. Vegetatio 117: 113–121.CrossRefGoogle Scholar
  66. The International Plant Names Index (2012). Available at: https://doi.org/www.ipni.org. Accessed May 28, 2013.
  67. Thompson, I. 2011. Biodiversity, ecosystem thresholds, resilience and forest degradation. Unasylva 238:25–30.Google Scholar
  68. Veblen, T.T., Mermoz, M., Martin, C. and Ramilo, E. 1989. Effects of Exotic Deer on Forest Regeneration and Composition in Northern Patagonia. J. Appl. Ecol. 26:711–724.CrossRefGoogle Scholar
  69. Veblen, T.T. and Schlegel, F.M. 1982. Reseña ecológica de los bosques del sur de Chile. Bosque 4:73–115.CrossRefGoogle Scholar
  70. Zotz, G. 1998. Demography of the epiphytic orchid, Dimerandra emarginata. J. Trop. Ecol. 14:725–741.CrossRefGoogle Scholar
  71. Zotz, G. 1995. How fast does an epiphyte grow? Selbyana 16:150–154.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Chair of Site Classification and Vegetation Science, Faculty of Environment and Natural ResourcesUniversity of FreiburgFreiburgGermany
  2. 2.Facultad de Ciencias Forestales y Recursos Naturales, Instituto de SilviculturaUniversidad Austral de ChileValdiviaChile

Personalised recommendations