Advertisement

Community Ecology

, Volume 13, Issue 2, pp 194–202 | Cite as

Vegetation, soils and seed banks of limestone grasslands are still impacted by former cultivation one century after abandonment

  • E. ForeyEmail author
  • T. Dutoit
Article

Abstract

This study identifies the long lasting impacts of former cultivation on soils, seed banks and above-ground vegetation of limestone grasslands. We compared the resilience of three crop fields cultivated in the 19th century and abandoned (Abandoned Fields) with three grasslands which have never been cultivated (Old Grasslands). Grasslands were located in the Nature reserve of Grand-Pierre and Vitain valleys in France. Sites were identified using historical sources. Chemical and physical soil properties, above-ground vegetation and soil seed bank (0-10 cm and 10-20 cm) were studied. Data were analysed using a multivariate and univariate analyses to detect the effects/impacts of ancient cultivation. Our results clearly show that soil properties (e.g., calcium, carbonate, clay contents), above-ground vegetation (species diversity, moss and lichen cover) and seed bank (floristic composition, species-richness and diversity) are still impacted more than one century after their abandonment. Species richness of both above ground vegetation and seed bank are higher in old grasslands than in formerly cultivated fields. In the seed bank of the formerly cultivated soils we also found the presence of a very rare arable weed species (Althaea hirsuta) which has not been inventoried for a long time in the above-ground vegetation of the nature reserve. The resilience of formerly cultivated limestone grasslands might be influenced by the present management regime (site effect). Nevertheless, the resilience period of limestone grasslands is very long-more than one century-and return to an initial state might be difficult or impossible to reach.

Keywords

Long-term effect Historical ecology Seed-bank and above ground vegetation Soil disturbance Spontaneous regeneration 

Abbreviations

AF

Abandoned Fields

OG

Old Grassland

Nomenclature

Kerguelen (1999) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2012_1302194_MOESM1_ESM.pdf (154 kb)
Supplementary material, approximately 157 KB.

References

  1. Arlot, C. and J. Hesse. 1981. Eléments pour une gestion d’un milieu calcicole de plaine: l’exemple de la réserve naturelle de Grand-Pierre et Vitain (Loir-et-Cher). Bull. Ecol. 12:249–294.Google Scholar
  2. Alard, D., O. Chabrerie, T. Dutoit, P. Roche and E. Langlois. 2005. Patterns of secondary succession in chalk grasslands: can we distinguish the influence of former land uses from vegetation present data? Basic Appl. Ecol. 6:161–173.CrossRefGoogle Scholar
  3. Aubert, G. 1970. Méthodes d’analyses du sol. Editions CRDP, Marseille, France.Google Scholar
  4. Austrheim, G. and G.A. Olsson. 1999. How does continuity in grassland management after ploughing affect plant community patterns? Plant Ecol. 145:59–74.CrossRefGoogle Scholar
  5. Baize, D. 2000. Guide des analyses en pédologie, INRA, Paris, France.Google Scholar
  6. Bakker, J.P., P. Poschlod, R.J. Strykstra, R.M. Bekker and K. Thompson. 1996. Seed banks and seed dispersal: important topics in restoration ecology. Acta Bot. Neerl. 45:461–490.CrossRefGoogle Scholar
  7. Bobbink, R. and J.H. Willems. 1987. Increasing dominance of B. pinnatum (L.) Beauv. in chalk grasslands: a threat to a species rich ecosystem. Biol. Cons. 40:301–314.CrossRefGoogle Scholar
  8. Bossuyt, B., J. Butaye and O. Honnay. 2006. Seed bank composition of open and overgrown calcareous grassland soils - a case study from Southern Belgium. J. Environ. Manage. 79:364–371.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bossuyt, B. and Honnay, O. 2008. Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities. J. Veg. Sci. 19:875–884.CrossRefGoogle Scholar
  10. Botté, F. 1993. Les espèces adventices des cultures et messicoles du Val de Loire: bilan. In: Dalmas, J.P. (ed.) Faut-il sauver les mauvaises herbes? Conservatoire Botanique National de Gap-Charance, Gap, France. pp. 241–254.Google Scholar
  11. Buisson, E. and T. Dutoit. 2004. Colonisation by native species of abandoned farmland adjacent to a remnant patch of Mediterranean steppe. Plant Ecol. 174:371–384.Google Scholar
  12. Buisson, E., T. Dutoit, F. Torre, C. Römermann and P. Poschlod. 2006. The implications of seed rain and seed bank patterns for plant succession at the edges of abandoned fields in Mediterranean landscapes. Agri. Ecosyst. Environ. 115:6–14.CrossRefGoogle Scholar
  13. Chessel, D. 1997. Ordination sous contraintes. Documentation de la programmathèque ADE-4, Université Lyon I, Lyon.Google Scholar
  14. Chessel, D., A.B. Dufour and J. Thioulouse. 2004. The ade4 package - I: One-table methods, R-News 4:5–10.Google Scholar
  15. Corcket, E., P. Liancourt, R.M. Callaway and R. Michalet. 2003. The relative importance of competition for two dominant grass species as affected by environmental manipulations in the field. Ecoscience 10: 186–194.CrossRefGoogle Scholar
  16. Cornish, M.W. 1954. The origin and structure of the grassland types of the Central North Downs. J. Ecol. 42: 359–374.CrossRefGoogle Scholar
  17. Davies, A. and S. Waite. 1998. The persistence of calcareous grassland species in the soil seed bank under developing and established scrub. Plant Ecol. 136: 27–39.CrossRefGoogle Scholar
  18. Dolédec, S. and D. Chessel. 1994. Co-inertia analysis: an alternative method for studying species-environment relationships. Freshwater Biol. 31: 277–294.CrossRefGoogle Scholar
  19. Dölle, M. and W. Schmidt. 2009. The relationship between soil seed bank, above-ground vegetation and disturbance intensityonold-field successional permanent plots, App. Veg. Sci . 12: 415–428.CrossRefGoogle Scholar
  20. Dupouey J.L., E. Dambrine, J.D. Laffite and C. Moares. 2002. Irreversible impact of past land use on forest soils and biodiversity. Ecology 83:2978–2984.CrossRefGoogle Scholar
  21. Dutoit, T. and D. Alard. 1995a. Permanent seed banks in chalk grassland under various management regimes: their role in the restoration of species-rich plant communities. Biodivers. Conser. 4:939–950.CrossRefGoogle Scholar
  22. Dutoit, T. and D. Alard. 1995b. Mécanisme d’une succession végétale secondaire en pelouse calcicole: une approche histori-que. C.R. Acad. Sci. 318:897–907.Google Scholar
  23. Dutoit, T., E. Buisson, P. Roche and D. Alard. 2003a. Land use history and botanical changes in the calcareous hillsides of Upper-Normandy (North-Western France): new implications for their conservation management. Biol. Cons. 115:1–19.CrossRefGoogle Scholar
  24. Dutoit, T., E. Gerbaud, E. Buisson and P. Roche. 2003b. Dynamique d’une communauté d’adventices dans un champs de céréales créé après le labour d’une prairie semi-naturelle: rôles de la banque de graines permanente. Ecoscience 10:225–235.CrossRefGoogle Scholar
  25. Dutoit, T., M. Thinon, B. Talon, E. Buisson and D. Alard. 2009. Sampling soil wood charcoals at a high spatial resolution: a new methodology to investigate the origin of grassland plant communities. J. Veg. Sci. 20:349–358.CrossRefGoogle Scholar
  26. Eldridge, D.J., W.S. Semple and T.B. Koen. 2000. Dynamics of cryptogamic soil crusts in a derived grassland in south-eastern Australia. Austral Ecol. 25:232–240.CrossRefGoogle Scholar
  27. Fischer, S.F., P. Poschlod and B. Beinlich. 1996. Experimental studies on the dispersal of plants and animals on sheep in calcareous grasslands. J. Appl. Ecol. 33:1206–1222.CrossRefGoogle Scholar
  28. Gibson, C.W.D., T.A. Watt and V.K. Brown. 1987. The use of sheep grazing to recreate species-rich grassland from abandoned arable land. Biol. Cons. 42:165–183.CrossRefGoogle Scholar
  29. Gibson, C.W.D. and V.K. Brown. 1991. The nature and rate of development of calcareous grassland in southern Britain. Biol. Cons. 58:297–316.CrossRefGoogle Scholar
  30. Gibson, C.W.D. and V.K. Brown. 1992. Grazing and vegetation change: deflected or modified succession? J. Appl. Ecol. 29:120–131.CrossRefGoogle Scholar
  31. Gough, M.W. and R.H. Marrs. 1990. A comparison of soil fertility between semi- natural and agricultural plant communities, implications for the creation of species-rich grassland on abandoned agricultural land. Biol. Cons. 51:83–96.CrossRefGoogle Scholar
  32. Graham, D.J. and M. Hutchings. 1988a. A field investigation of germination from seed bank of a chalk grassland ley on former arable land. J. Appl. Ecol. 25:253–63.CrossRefGoogle Scholar
  33. Graham, D.J. and M. Hutchings. 1988b. Estimation of the seed bank of a chalk grassland ley established on a former arable land. J. Appl. Ecol. 25:241–252.CrossRefGoogle Scholar
  34. Gustavsson, E., T. Lennartsson and M. Emanuelsson. 2007. Land use more than 200 years ago explains current grassland plant diversity in a Swedish agricultural landscape. Biol. Cons. 138:47–59CrossRefGoogle Scholar
  35. Hillier, S.H., D.W.H. Walton and D.A. Wells. 1990. Calcareous Grassland, Ecology and Management. Bluntisham Books, Bluntisham, UK.Google Scholar
  36. Hirst, R.A., R.F. Pywell, R.H. Marrs and P.D. Putwain. 2003. The resistance of a chalk grassland to disturbance. J. Appl. Ecol. 40:368–379.CrossRefGoogle Scholar
  37. Hirst, R.A., R.F. Pywell, R.H. Marrs and P.D. Putwain. 2005. The resilience of calcareous and mesotrophic grasslands following disturbance. J. Appl. Ecol. 42:498–506.CrossRefGoogle Scholar
  38. Jackson, D.A. 1995. PROTEST: a PROcrustean randomization TEST of community-environment concordance. Ecoscience 2:297–303.CrossRefGoogle Scholar
  39. Jacquemyn, H., R. Brys and M. Hermy. 2003. Short-term effects of different management regimes on the response of calcareous grassland vegetation to increased nitrogen. Biol. Cons. 111:137–147.CrossRefGoogle Scholar
  40. Jacquemyn, H., C. Van Mechelen, R. Brysand and O. Honnay. 2011. Management effects on the vegetation and soil seed bank of calcareous grasslands: An 11-year experiment. Biol. Cons. 144:416–422.CrossRefGoogle Scholar
  41. Jauzein, P. 1995. Flore des champs cultivés. Sopra, INRA, Paris, France.Google Scholar
  42. Karlik, P. and P. Poschlod. 2009. History or abiotic filter: which is more important in determining the species composition of calcareous grasslands? Preslia 81:321–340.Google Scholar
  43. Kerguelen, M. 1999. Index synonymique de la Flore de France (http://www.dijon.inra.fr/flore-france).
  44. Koncz, G., P. Török, M. Papp, G.Matus, B. Tóthmérész, 2011. Penetration of weeds into the herbaceous understorey and soil seed bank of a Turkey oak-sessile oak forest in Hungary. Community Ecol. 12: 227–233CrossRefGoogle Scholar
  45. Liancourt, P., E. Corcket and R. Michalet. 2005. Stress tolerance abilities and competitive responses in a watering and fertilization field experiment. J. Veg. Sci. 16:713–722.CrossRefGoogle Scholar
  46. Mamarot, J. 2002. Mauvaises herbes des cultures. ACTA, Paris, France.Google Scholar
  47. Maubert, P. 1978. Contribution à l’étude phytosociologique des pelouses calcicoles du bassin parisien. Ph. D. Thesis, University of Paris XI, Orsay, France.Google Scholar
  48. Maubert, P. 2000. Impacts du fauchage et du pâturage sur la flore et la végétation des pelouses de la réserve naturelle des vallées de Grand-Pierre et de Vitain. Rech. Nat. Reg. Centre 7:23–35.Google Scholar
  49. Maubert, P. and T. Dutoit. 1995. Connaître et gérer les pelouses calcicoles. ATEN-CDPNE, Montpellier, France.Google Scholar
  50. Milberg, P. and M.L. Hansson. 1994. Soil seed bank and species turnover in a limestone grassland. J. Veg. Sci. 5:35–42.CrossRefGoogle Scholar
  51. Mouissie A.M., P. Vos, H.M.C. Verhagen and J.P. Bakker. 2005. Endozoochory by free-ranging, large herbivores: Ecological correlates and perspectives for restoration. Basic Appl. Ecol. 6:547–558.CrossRefGoogle Scholar
  52. Muller, F.M. 1978. Seedlings of the North-western European Lowland. A Flora of Seedlings. Junk, The Hague, Netherlands.CrossRefGoogle Scholar
  53. Muller, S., T. Dutoit, D. Alard and F. Grévilliot. 1998. Restoration and rehabilitation of species-rich grassland ecosystem in France: a review. Restor. Ecol. 6:94–101.CrossRefGoogle Scholar
  54. Navarro, A.F., J. Cegarra, A. Roig and D. García. 1993. Relationships between organic matter and carbon contents of organic wastes. Biores. Technol. 44:203–207.CrossRefGoogle Scholar
  55. Odum, S. 1965. Germination of ancient seeds: floristical observations and experiments with archaeologically dated soil samples. Dan. Bot. Arkiv 24: l–70.Google Scholar
  56. Plue, J., M. Hermy, K. Verheyen, P. Thuillier, R. Saguez and G. Decocq. 2008. Persistent changes in forest vegetation and seed bank 1,600 years after human occupation. Landsc. Ecol. 23:673–688.CrossRefGoogle Scholar
  57. Poschlod, P., S. Kiefer, U. Tränkle, S. Fischer and S. Bonn. 1998. Plant species richness in calcareous grasslands as affected by dispersability in space and time. Appl. Veg. Sci. 1:75–90.CrossRefGoogle Scholar
  58. R Development Core Team. 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org.
  59. Roberts, H.A. 1981. Seed bank in soils. Adv. Appl. Biol. 6:1–55.Google Scholar
  60. Römermann C., T. Dutoit, P. Poschlod and E. Buisson. 2005. Influence of former cultivation on the unique Mediterranean steppe of France and consequences for conservation management. Biol. Cons. 121:21–33.CrossRefGoogle Scholar
  61. Smith, C.J. 1980. The Ecology of the English Chalk. Academic Press, London, UK.Google Scholar
  62. Sutherland, W.J. 1996. Ecological Census Techniques. Cambridge University Press, Cambridge, UK.Google Scholar
  63. Sutherland, W.J. and D.A. Hill. 1995. Managing Habitats for Conservation. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  64. Ter Heerdt, G.N.J., G.L. Verweij, R.M. Bekker and J.P. Bakker. 1996. An improved method for seed-bank analysis: seedling emergence after removing the soil by sieving. Funct. Ecol. 10:144–151.CrossRefGoogle Scholar
  65. Temperton V.M., R.J. Hobbs, T. Nuttle and S. Halle. 2004. Assembly Rules and Restoration Ecology: Bridging the Gap between Theory and Practice. Island Press, Washington.Google Scholar
  66. Thompson, K., J.P. Bakker and R.M. Bekker. 1997. The Soil Seed Banks of North Western Europe: Methodology, Density and Longevity. Cambridge University Press, Cambridge, UK.Google Scholar
  67. Thompson, K. and J.P. Grime. 1979. Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. J. Ecol. 67: 893–291.CrossRefGoogle Scholar
  68. WallisDeVries, M.F., P. Poschlod and J.H. Willems. 2002. Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna. Biol. Cons. 104:265–273.CrossRefGoogle Scholar
  69. Wells, T.C.E., J. Sheail, D.F. Ball and L.K Ward. 1976. Ecological studies on the Porton Ranges: relationships between vegetation, soils and land-use history. J. Ecol. 64:589–626.CrossRefGoogle Scholar
  70. Willems, J.H. 1990. Calcareous grasslands in continental Europe. In: Hillier, S. H., D. W. H. Walton and D.A.Wells (eds), Calcareous Grassland: Ecology and Management. Bluntisham Books, Bluntisham, UK, pp. 3–10.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Laboratoire d’Ecologie - EA 1293 ECODIV, FED SCALE, Bâtiment IRESE A, Place E. Blondel, UFR Sciences et TechniquesUniversité de RouenMont Saint Aignan CedexFrance
  2. 2.IMEP - UMR CNRSIRD Université d’Avignon et des Pays de Vaucluse, IUT, AgroparcAgroparcAvignon cedex 9France

Personalised recommendations