Community Ecology

, Volume 13, Issue 2, pp 145–154 | Cite as

Effects of canopy gaps on forest floor vascular and non-vascular plant species composition and diversity in an uneven-aged Nothofagus betuloides forest in Tierra del Fuego, Chile

  • A. PromisEmail author
  • S. Gärtner
  • A. Reif
  • G. Cruz


Canopy gaps modify the environmental conditions available for plant growth in forests. Small canopy gaps are frequent in Nothofagus betuloides forests of Tierra del Fuego. Our objective was to study whether the forest floor vascular and non-vascular plant species composition and diversity are influenced by the occurrence of small-scale disturbances due to changes in the below-canopy solar radiation transmittances and forest floor heterogeneity (cover of litter, bare soil and fallen woody debris classed in three decay stages) in a N. betuloides forest located in south western Tierra del Fuego (53°59’S, 69 58’W). The vegetation was sampled in and around 13 canopy gaps (47 m2 on average). Following a light gradient, 65 plots (2 x 2 m) were established. The cover of all plant species was recorded using Londo’s scale. Species richness and total cover were calculated for each of the following taxonomical groups: spermatophyta (monocotyledons, dicotyledons), pteridophyta, bryophyta, marchantiophyta, anthocerotophyta and lichens. There were 63 species found on the forest floor. Marchantiophyta was the most diverse group with the highest species richness (6.6 species per plot). The vegetation on the forest floor was very homogeneous in species composition, richness and species diversity. The ordination analysis (NMS) showed that the community composition was weakly influenced by the patterns of below-canopy solar radiation transmittances and substrate heterogeneity. MRPP analysis of the community composition did not reveal differences in plant species assemblages between positions along transects running from areas beneath closed canopy to the open centres of canopy gaps. The marchantiophyte Chiloscyphus magellanicus was the only species which can be considered to be an indicator species; it was more likely to occur in gap centres (more open conditions). We conclude that these small canopy gaps do not very much modify the forest floor communities and the communities can be considered relatively stable.


Below-canopy solar radiation transmittance Forest floor species composition Gap partitioning Nothofagus betuloides Substrate heterogeneity 



Intermediate Decayed Fallen Woody Debris


Least Decayed Fallen Woody Debris


Most Decayed Fallen Woody Debris


Multi-response Permutation Procedure Analyses


Non-metric Multidimensional Scaling


Plant Area Index


Zuloaga et al. (2008) for vascular plants Müller (2009) for bryophytes Hässel de Menéndez and Rubies (2009) for marchantiophytes and anthocerotophytes Galloway and Quilhot (1998) for lichens 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2012_1302145_MOESM1_ESM.pdf (145 kb)
Supplementary material, approximately 148 KB.


  1. Anderson, K.L. and D.J. Leopold. 2002. The role of canopy gaps in maintaining vascular plant diversity at a forested wetland in New York State. J. Torrey Bot. Soc. 129: 238–250.CrossRefGoogle Scholar
  2. Arroyo, M.T.K., C. Donoso, R.E. Murúa, E.E. Pisano, R.P. Schlatter and I.A. Serey. 1996. Toward an Ecologically Sustainable Forestry Project. Concepts, Analysis and Recommendations. Departamento de Investigación y Desarrollo, Universidadde Chile, Santiago de Chile.Google Scholar
  3. Bannister, J.R., O.J. Vidal, E. Teneb and V. Sandoval. 2011. Latitudinal patterns and regionalization of plant diversity along a 4270-km gradient in continental Chile. Austral Ecol. 37: 500–509.CrossRefGoogle Scholar
  4. Bauhus, J. 2009. Rooting patterns of old-growth forests: is above-ground structural and functional diversity mirrored below-ground? In: C. Wirth, G. Gleixner and M. Heimann (eds.), Old-Growth Forests. Function, fate and value. Ecological Studies 127. Springer-Verlag, Berlin. pp. 211–229.CrossRefGoogle Scholar
  5. Berryman, S. and B. McCune. 2006. Epiphytic lichens along gradients in topography and stand structure in western Oregon, USA. Pacific Northwest Fungi 1: 1–37.CrossRefGoogle Scholar
  6. Brokaw, N. 1982. The definition of treefall gap and its effects on measures of forest dynamics. Biotropica 14: 158–160.Google Scholar
  7. Busing, R.T. and P.S. White. 1997. Species diversity and small-scale disturbance in an old-growth temperate forest: a consideration of gap partitioning concepts. Oikos 78: 562–568.CrossRefGoogle Scholar
  8. Canham, C.D. and P.L. Marks. 1985. The response of woody plants to disturbance: patterns of establishment and growth. In: S.T.A. Pickett and P.S. White (eds.), The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, New York. pp. 197–216.Google Scholar
  9. Collins, B.S., K.P. Dunne and S.T.A. Pickett. 1985. Responses of forest herbs to canopy gaps. In: S.T.A. Pickett and P.S. White (eds.), The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, New York. pp. 217–234.Google Scholar
  10. Crites, S. and M.R.T. Dale. 1998. Diversity and abundance of bryo-phytes, lichens, and fungi in relation to woody substrate and suc-cessional stage in aspen mixedwood boreal forests. Can. J. Bot. 76: 641–651.Google Scholar
  11. Cruz, G. and J. Caldentey (eds.). 2007. Caracterización, Silvicultura y Uso de los Bosques de Coihue de Magallanes (Nothofagus betuloides) en la XII Región de Chile. Facultad de Ciencias Forestales, Universidad de Chile, Santiago de Chile.Google Scholar
  12. Damascos, M.A. and E.H. Rapoport. 2002. Diferencias en la flora herbácea y arbustiva entre clarosy áreas bajo dosel en un bosque de Nothofagus pumilio en Argentina. Rev. Chil. Hist. Nat. 75: 465–472.CrossRefGoogle Scholar
  13. Damascos, M.A. and E.H. Rapoport. 2002. Diferencias en la flora herbácea y arbustiva entre clarosy áreas bajo dosel en un bosque de Nothofagus pumilio en Argentina. Revista Chilena de Histo-ria Natural 75: 465–472.Google Scholar
  14. De Grandpré, L., D. Boucher, Y. Bergeron and D. Gagnon. 2011. Effects of small canopy gaps on boreal mixedwood understory vegetation dynamics. Community Ecol. 12: 67–77.CrossRefGoogle Scholar
  15. Dufrêne, M. and P. Legendre. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67: 345–366.Google Scholar
  16. Fahey, R.T. and K.J. Puettmann. 2007. Ground-layer disturbance and initial conditions influence gap partitioning of understorey vegetation. J. Ecol. 95: 1098–1109.CrossRefGoogle Scholar
  17. Fajardo, A. and R. de Graaf, R. 2004. Tree dynamics in canopy gaps in old-growth forests of Nothofagus pumilio in southern Chile. Plant Ecol. 173: 95–105.CrossRefGoogle Scholar
  18. Frederiksen, P. 1988. Soils of Tierra del Fuego. A satellite-based land survey approach. Appendix: Methods and soil data - Annex with 5 plates. Folia Geographica Danica Tom. XVIII.Google Scholar
  19. Galloway, D.J. and W. Quilhot. 1998. Checklist of Chilean lichen-forming and lichenicolous fungi. Gayana Bot. 55: 111–185.Google Scholar
  20. Greene, S.W., G.G. Hässel de Menéndez C.M. Matteri. 1985. La contribución de las briófitas en la vegetación de la transecta. In: O. Boelcke, D.M. Moore and F.A. Roig (eds.), Transecta Botánica de la Patagonia Austral. Consejo Nacional de Investi-gaciones Científicas y Técnicas (Argentina), Instituto de la Patagonia (Chile), Royal Society (UK), Buenos Aires. pp. 557–591.Google Scholar
  21. Gutiérrez, E. 1994. Els boscos deNothofagusde la Terra del Foc com a paradigma de dinàmica successional del no-equilibri. Treballs de la SCB 45: 93–121.Google Scholar
  22. Hart, S.A. and H.Y.H. Chen. 2006. Understory vegetation dynamics of North American boreal forests. Crit. Rev. Plant Sci. 25: 381–397.CrossRefGoogle Scholar
  23. Hässel de Manéndez, G.G. 1999. Chiloscyphus subgenus Phaeochi-loscyphus (Hepatophyta, Geocalycaceae) from southern South America. Rev. Mus. Argentino Cienc. Nat. 1: 121–127.CrossRefGoogle Scholar
  24. Hässel de Menéndez, G.G. and S.S. Solari. 1985. Catálogo de las hepáticas. In: O. Boelcke, D.M. Moore and F.A. Roig (eds.), Transecta Botánica de la Patagonia Austral. Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina), Instituto de la Patagonia (Chile), Royal Society (UK), Buenos Aires. pp. 299–342.Google Scholar
  25. Hässel de Menéndez, G.G. and M.F. Rubies. 2009. Catalogue of Marchantiophyta and Anthocerotophyta of southern South America: Chile, Argentina and Uruguay, including Easter Is. (Pascua I.), Malvinas Is. (Falkland Is.), South Georgia Is., and the subantarctic South Shetland Is., South Sandwich Is., and South Orkney Is. Nova Hedwigia, Beih. 134. Gebr. Borntraeger, Stuttgart.Google Scholar
  26. Holst, T., S. Hauser, A. Kirchgäßner, A. Matzarakis, H. Mayer and D. Schindler. 2004. Measuring and modelling plant area index in beech stands. Int. J. Biometeorol. 48: 192–201.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jonsson, B.G. and P.-A. Esseen. 1990. Treefall disturbance maintains high bryophyte diversity in a boreal spruce forest. J. Ecol. 78: 924–936.CrossRefGoogle Scholar
  28. Kent, M. 2012. Vegetation Description and Data Analysis: A Practical Approach. 2nd edn. Wiley-Blackwell, Oxford.Google Scholar
  29. Kimmerer, R.W. 2005. Patterns of dispersal and establishment of bryophytes colonizing natural and experimental treefall mounds in northern hardwood forests. Bryologist 108: 391–401.CrossRefGoogle Scholar
  30. Kimmerer, R.W. and C.C. Young. 1996. Effect of gap size and regeneration niche on species coexistence in bryophyte communities. Bull. Torrey Bot. Club 123: 16–24.CrossRefGoogle Scholar
  31. Kruskal, J.B. 1964. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29: 115–129.CrossRefGoogle Scholar
  32. Londo, G. 1984. The decimal scale for releves of permanent quadrats. In: R. Knapp (ed.), Sampling Methods and Taxon Analysis in Vegetation Science. Handb. Veg. Sci. 4, Junk, The Hague. pp. 45–49.Google Scholar
  33. Matteri, C.M. 1985. Catálogo de los musgos. In: O. Boelcke, D.M. Moore and F.A. Roig (eds.), Transecta Botánica de la Patagonia Austral. Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina), Instituto de la Patagonia (Chile), Royal Society (UK), Buenos Aires. pp. 265–298.Google Scholar
  34. McAlister, S. 1995. Species interactions and substrate specificity among log-inhabiting bryophyte species. Ecology 76: 2184–2195.CrossRefGoogle Scholar
  35. McCune, B. and J.B. Grace. 2002. Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, Oregon.Google Scholar
  36. McCune, B. and M.J. Mefford. 1999. PC-ORD. Multivariate Analysis of Ecological Data. Version 5.0. MjM Software, Gleneden Beach, Oregon.Google Scholar
  37. Messier, C., J. Posada, I. Aubin and M. Beaudet. 2009. Functional relationships between old-growth forest canopies, understory light and vegetation dynamics. In: C. Wirth, G. Gleixner and M. Heimann (eds.),Old-Growth Forests. Function, Fate and Value. Ecological Studies 127. Springer-Verlag, Berlin. pp. 115–139.CrossRefGoogle Scholar
  38. Mills, S.E. and S.E. Macdonald. 2004. Predictors of moss and liverwort species diversity of microsites in conifer-dominated boreal forest. J. Veg. Sci. 15:189–198.CrossRefGoogle Scholar
  39. Moore, D. 1983. Flora of Tierra del Fuego. Anthony Nelson, England, Missouri Botanical Garden, Missouri.Google Scholar
  40. Müller, F. 2009. An updated checklist of the mosses of Chile. Archive for Bryology 58: 1–124.Google Scholar
  41. Pisano, E. 1971. Comunidades vegetales del área del fiordo Parry, Tierra del Fuego (Parque Nacional “Alberto M. De Agostini”). Ans. Inst. Pat. (Chile) 2(1-2): 93–133.Google Scholar
  42. Pisano, E. 1977. Fitogeografía de Tierra del Fuego - Patagonia Chilena. I Comunidades vegetales entre las latitudes 52° y 56° S. Ans. Inst. Pat. (Chile) 8: 121–250.Google Scholar
  43. Promis, A. 2009. Natural small-scale canopy gaps and below-canopy solar radiation effects on the regeneration patterns in a Not-hofagus betuloides forest –A case study from Tierra del Fuego, Chile. Ph.D. dissertation, University of Freiburg, Freiburg i.Br.Google Scholar
  44. Promis, A., G. Cruz, A. Reif and S. Gärtner S. 2008. Nothofagus betuloides (Mirb.) Oerst. 1871 (Fagales: Nothofagaceae) forests in Southern Patagonia and Tierra del Fuego. Ans. Inst. Pat. (Chile) 36: 53–67.Google Scholar
  45. Promis, A., S. Gärtner, A. Reif and G. Cruz. 2010. Effects of natural small-scale disturbances on below-canopy solar radiation and regeneration patterns in an old-growth Nothofagus betuloides forest in Tierra del Fuego, Chile. Allg. Forst- u. J.-Ztg. 181: 53–64.Google Scholar
  46. Promis, A., S. Gärtner, D. Butler-Manning, C. Durán-Rangel, A. Reif, G. Cruz and L. Hernández. 2011. Comparison of four different programs for the analysis of hemispherical photographs using parameters of canopy structure and solar radiation trans-mittance. Waldökologie, Landschaftsforschung und Natur-schutz 11: 19–33.Google Scholar
  47. Rebertus, A.J. and T.T. Veblen. 1993. Structure and tree-fall gap dynamics of old-growth Nothofagus forests in Tierra del Fuego, Argentina. J. Veg. Sci. 4: 641–654.CrossRefGoogle Scholar
  48. Rebertus, A.J., T.T. Veblen and T. Kitzberger. 1993. Gap formation and dieback in Fuego-Patagonian Nothofagus forests. Phyto-coenologia 23: 581–599.CrossRefGoogle Scholar
  49. Rich P.M., J. Wood, D.A. Vieglais, K. Burek and N. Webb. 1999. Guide to HemiView: Software for Analysis of Hemispherical Photography. Delta-T Devices Ltd, Cambridge. Available from 100703399Google Scholar
  50. Roig, F.A., J. Anchorena, O. Dollenz, A.M. Faggi and E. Méndez. 1985. Las comunidades de la Transecta Botánica de la Patagonia Austral. In: O. Boelcke, D.M. Moore and F.A. Roig (eds.),Tran-secta Botánica de la Patagonia Austral. Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina), Instituto de la Patagonia (Chile), Royal Society (UK), Buenos Aires. pp. 557–591.Google Scholar
  51. Rozzi, R., J.J. Armesto, B. Goffinet, W. Buck, F. Massardo, J. Silan-der, M.T.K. Arroyo, S. Russell, C.B. Anderson, L.A. Cavieres and J.B. Callicott. 2008. Changing lenses to assess biodiversity: patterns of species richness in sub-Antarctic plants and implications for global conservation. Front. Ecol. Environ. 30: 325–336.Google Scholar
  52. Runkle, J.R. 1982. Patterns of disturbance in some old-growth mesic forest of eastern North America. Ecology 63: 1533–1546.CrossRefGoogle Scholar
  53. Sokal, R.R. and F.J. Rohlf. 2000.Biometry. The Principles and Practice of Statistics in Biological Research. 3rd ed. Freeman, New York.Google Scholar
  54. Spies, T.A., J.F. Franklin and M. Klopsch. 1990. Canopy gaps in Douglas-fir forests of the Cascade Mountains. Can. J. For. Res. 20: 649–658.CrossRefGoogle Scholar
  55. Tuhkanen, S.I. 1992. The climate of Tierra del Fuego from a vegetation geographical point of view and its ecoclimatic counterparts elsewhere. Acta Botanici Fennici 145: 1–64.Google Scholar
  56. Ulanova, N.G. 2000. The effects of windthrow on forests at different spatial scales: a review. Can. J. For. Res. 135, 155–167.Google Scholar
  57. Veblen, T.T. 1989. Nothofagus regeneration in tree-fall gaps in northern Patagonia. Can. J. For. Res. 19: 365–371.CrossRefGoogle Scholar
  58. Veblen, T.T., C. Donoso, T. Kitzberger and A.J. Rebertus. 1996. Ecology of southern Chilean and Argentinean. Nothofagus forests. In: T.T. Veblen, R.S. Hill and J. Read (eds.), The Ecology and Biogeography of Nothofagus Forests. Yale University Press, New Haven. pp. 293–353.Google Scholar
  59. Zimmerman, G.M., H. Goetz and P. Mielke. 1985. Use of an improved statistical method for group comparisons to study effects of prairie fire. Ecology 66: 606–611.CrossRefGoogle Scholar
  60. Zuloaga, F.O., O. Morrone and M. Belgrano (eds.). 2008. Catálogo de las plantas vasculares del Cono Sur (Argentina, Sur de Brasil, Chile, Paraguay y Uruguay). Monographs in Systematic Botany Volume 107. Missouri Botanical Garden Press, St. Louis, Missouri.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Silviculture and Nature ConservationUniversity of ChileSantiagoChile
  2. 2.Institute of SilvicultureUniversity of FreiburgFreiburgGermany

Personalised recommendations