Community Ecology

, Volume 13, Issue 2, pp 137–144 | Cite as

Intra-annual variation of intertidal benthic community in a breakwater zone on the north coast of Rio de Janeiro, Brazil

  • B. P. Masi
  • I. R. ZalmonEmail author


The present study investigated the vertical distribution of intertidal benthic organisms in different periods of the year, relating them to environmental variables (tide, air temperature, wave height and period) on a breakwater zone on the northern coast of Rio de Janeiro State. Quadrats of 400 cm2 were superposed along four vertical profiles and sampled by a photoquadrat method. A seasonal difference was identified in the degree of air exposure, which was higher in October 2005 and February 2006. Air temperature and wave height and periodicity differed significantly among the four studied periods. Some species occurred only in one period as Fissurella clenchi in July 2005 and October 2005, Gracilaria domingensis in July 2005, Grateloupia sp. in October 2005) and Porphyra acanthophora in October 2005 and February 2006. Species richness and diversity values were higher in the intermediary quadrats in all the studied periods. The intermediate benthic strip occupied a narrower zone, changing its spatial location according to the season of the year: in May 2005 it was closer to the lower zone, in July and October 2005 it occupied an intermediate position, and in February 2006 it was nearest to the upper quadrats. The hypothesis of intra-annual variation of the benthic community distribution according to the seasonal variability of tides, air temperatures, wave height and periodicity was accepted for the intermediate strip of the intertidal zone, related to taxonomic differences and on the abundance of dominant species considering the four studied seasons.


Boulder Epibenthic Intertidal Rio de Janeiro Rocky shore Seasonal variation Vertical distribution 


Algae: Joly (1957) Mollusca: Rios (1985) Crustacea: Young (1998), Polychaeta: Amaral (1987) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Absalão, R. S., R. Alves and P. Roberg. 1999. Complexo Littorina ziczac (Gmelin) (Mollusca, Gastropoda, Caenogastropoda) no litoral fluminense: análise morfométrica, distribuição vertical e bioquímica. Rev. Brasil. Zool. 16: 381–395.Google Scholar
  2. Amaral, A.C.Z. 1987. Breve caracterizaçao de Phragmatopoma lapi-dosa Kinberg, 1867 (Polychaeta, Sabellariidae). Rev. Brasil. Zool. 3: 471–474.Google Scholar
  3. Apolinário, M., R. Coutinho and M.H. Baeta-Neves. 1999. Periwinkle (Gastropoda: Littorinidae) habitat selection and its impact upon microalgal populations. Rev. Bras. Biol. 59: 211–218.Google Scholar
  4. Barbiero. D.C., I.M. Macedo. B.P. Masi and I.R. Zalmon. 2011. Comparative study of the estimated sample size for benthic in-tertidal species and communities. Lat. Am. J. Aquat. Res. 39: 1–10.Google Scholar
  5. Benedetti-Cecchi, L., E. Maggi, I. Bertocci, E. Vaselli, F. Micheli, G.C. Osio and F. Cinelli. 2003. Variation in rocky shore assemblages in the north-western Mediterranean: contrasts between islands and the mainland. J. Exp. Mar. Biol. Ecol. 293: 93–215.Google Scholar
  6. Brito L.V.R., M.T.M. Széchy and V. Cassano. 2002. Levantamento taxonômico das macroalgas da zona das marés de costões ro-chosos adjacentes ao terminal Marítimo Almirante Maximiano Fonseca, Baía da Ilha Grande, RJ. Atlântica 24: 17–26.Google Scholar
  7. Chapman, M.G. 2002. Patterns of spatial and temporal variation of macrofauna under boulders in a sheltered boulder field. Austral Ecol. 27: 211–228.Google Scholar
  8. Chapman, M.G. and F. Bulleri. 2003. Intertidal seawalls: new features of landscape in intertidal environments. Landsc. Urban Plan. 62: 159–172.Google Scholar
  9. Clarke, K.R. and Gorley, R.N. 2006. PRIMER v6: Plymouth Routines In Multivariate Ecological Research. User Manual/Tutorial. PRIMER-E, Plymouth.Google Scholar
  10. Clarke, K.R. and R.M. Warwick. 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. 2nd ed., PRIMER-E., Plymouth, UK.Google Scholar
  11. Coma, R.; M. Ribes, J.M. Gili and M. Zabala. 2000. Seasonality in coastal benthic ecosystems. Trends Ecol. Evol. 15: 448–453.PubMedGoogle Scholar
  12. Coutinho, R. and I.R. Zalmon 2009. O Bentos de Costões Rochosos. In: R.C. Pereira and A. Soares-Gomes (eds.). Biologia Marinha, Intercięncia Press, Rio de Janeiro, pp.147–158.Google Scholar
  13. Davidson I.C., A.C. Crook and D.K.A. Barnes. 2004 Quantifying spatial patterns of intertidal biodiversity: is movement important? Mar. Ecol. 25: 15–34.Google Scholar
  14. Denny, M.W. and R.T. Paine. 1998. Celestial mechanisms, sea-level changes, and intertidal ecology. Biol. Bull. 194: 108–115.PubMedGoogle Scholar
  15. Denny, M.W. and C.D.G. Harley. 2006. Hot limpets: predicting body temperature in a conductance-mediated thermal system. J. Exp. Biol. 209: 2409–2419.PubMedGoogle Scholar
  16. Dye, A.H. 1998. Dynamics of rocky intertidal communities: analyses of long time series from South African shores.Estuar. Coast. Shelf Sci. 46: 287–305.Google Scholar
  17. Gevertz, R. 1995. Em Busca do Conhecimento Ecológico: Uma In-trodução a Metodolgia. Edgard Blucher, São Paulo.Google Scholar
  18. Guichard, F., E. Bourget, and J.L. Robert. 2001. Scaling the influence of topographic heterogeneity on a intertidal benthic communities: alternate trajectories mediated by hydrodynamics and shading. Mar. Ecol. Progr. Ser. 217: 27–41.Google Scholar
  19. Harley, C.D.G. and B. Helmuth. 2003. Local and regional scale effects of wave exposure, thermal stress, and absolute versus effective shore level on patterns of intertidal zonation.. Limnol. Oceanogr. 48: 1498–1508.Google Scholar
  20. Helmuth, B. and M.W. Denny. 2003. Predicting wave exposure in the rocky intertidal zone: do bigger waves always lead to larger forces?. Limnol. Oceanogr. 48: 1338–1345.Google Scholar
  21. Hutchinson, N. and G.A. Williams. 2001. Spatial-temporal variation in recruitment on a seasonal, tropical rocky shore: the importance of local versus non-local processes. Mar. Ecol. Progr. Ser. 215: 57–68.Google Scholar
  22. Joly, A.B. 1957. Contribuiçao ao conhecimento da flora ficológica marinha da Baía de Santos e arredores. Bolm. Fac. Filos. Cienc. Univ. S. Paulo 14: 1–196.Google Scholar
  23. Kohler, K.E. and S.M. Gill. 2006. Coral Point Count with Excel extensions (CPCe): A visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32: 1259–1269.Google Scholar
  24. Little, C. and J. A. Kitching. 1996. The Biology of Rocky Shores., Oxford Univ. Press, Oxford.Google Scholar
  25. Macedo, I.M., B.P. Masi and I.R. Zalmon. 2006. Comparison of rocky intertidal community sampling methods at northern coast of Rio de Janeiro State, Brazil. Brazil. J. Oceanogr. 54: 147–154.Google Scholar
  26. Marchinko, K.B. and A.R. Palmer. 2003. Feeding in flow extremes: dependence of cirrus form on wave-exposure in four barnacle species. Zoology 106:127–141.PubMedGoogle Scholar
  27. Masi, B.P. and I.R. Zalmon. 2008. Zonação de comunidade bęntica do entremarés em molhes sob diferente hidrodinamismo na costa norte do Rio de Janeiro, Brasil. Rev. Brasil. Zool. 25: 662–673.Google Scholar
  28. Masi, B.P., I.M. Macedo and I.R. Zalmon. 2009a. Benthic community zonation in a breakwater on the north coast of the State of Rio de Janeiro, Brazil. Brazil. Arch. Biol. Technol. 52: 637–646.Google Scholar
  29. Masi, B.P., I.M. Macedo and I.R. Zalmon. 2009b. Annual and spatial variation of intertidal benthic community zonation in a breakwater off the Rio de Janeiro coast, south-eastern Brazil. J. Mar. Biol. Assoc. U. K. 89: 225–234.Google Scholar
  30. Morin, P.J. 1999. Community Ecology. Blackwell, Malden, Massa-chussets.Google Scholar
  31. Murray, S.N., R.F. Ambrose and M.N. Dethier. 2002. Methods for Performing Monitoring, Impact, and Ecological Studies on Rocky Shores. U. S. Dept. of the Interior, Minerals Management Service, Camarillo, CA.Google Scholar
  32. Nelson, T.A., J. Olson, L. Imhoff and A. V. Nelson. 2010. Aerial exposure and desiccation tolerances are correlated to species composition in “green tides” of the Salish Sea (northeastern Pacific). Bot. Mar. 53: 103–111.Google Scholar
  33. Oliveira, E.C. and E.J. Paula. 1984. Aspectos da distribuição vertical e variação sazonal de comunidades da zona das marés em costões rochosos do litoral norte de São Paulo. Rev. Brasil. Biol. 147: 44–71.Google Scholar
  34. Porri, F., C.D. Mcquaid and S. Radloff. 2006. Temporal scales of variation in settlement and recruitment of the mussel Perna perna (Linnaeus, 1758). J. Exp. Mar. Biol. Ecol. 332: 178–187.Google Scholar
  35. Preskitt, L.B., P.S. Vroom and C.M. Smith. 2004. A Rapid Ecological Assessment (REA). Quantitative survey method for benthic algae using photoquadrats with scuba. Pac. Sci. 58: 201–209.Google Scholar
  36. Rios, E.C. 1985. Seashells of Brazil. FURG, Rio Grande.Google Scholar
  37. Scrosati, R.A., B.V. Genne, C.S. Heaven and C.A. Watt. 2011. Species richness and diversity in different functional groups across environmental stress gradients: amodel for marine rocky shores. Ecography 34: 151–161.Google Scholar
  38. Stenseng, E., C.E. Braby, and G.N. Somero. 2005. Evolutionary and acclimation-induced variation in the thermal limits of heart function in congeneric marine snails (Genus Tegula): implications for vertical zonation. Biol. Bull. 208: 138–144.PubMedGoogle Scholar
  39. Tanaka, M. O., T.E.M. Duque-Estrada and C.A. 2001. Dynamics of the Acmaeid limpet Collisella subrugosa and vertical distribution of size and abundance along a wave exposure gradient. J. Molluscan Stud. 68: 55–64.Google Scholar
  40. Underwood, A.J. 1981. Structure of a rocky intertidal community in New South Wales: patterns of vertical distribution and seasonal changes. J. Exp. Mar. Biol. Ecol. 51: 57–85.Google Scholar
  41. Underwood, A.J. and M.G. Chapman. 2000. Variation in abundances of intertidal populations: consequences of extremities of environment. Hydrobiologia 426: 25–36.Google Scholar
  42. Young, P.S. 1998. Catalogue of Crustacea of Brazil. Serie livros 6. Museu Nacional/UFRJ. Rio de Janeiro.Google Scholar
  43. Zar, J.H. 1984. Biostatistical Analysis. Prentice Hall, New Jersey.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Laboratório de Cięncias Ambientais, Centro de Biocięncias e BiotecnologiaUniversidade Estadual do Norte FluminenseCampos dos GoytacazesBrasil

Personalised recommendations