Advertisement

Community Ecology

, Volume 13, Issue 1, pp 72–81 | Cite as

Woody vegetation patch types affect herbaceous species richness and composition in a Mediterranean ecosystem

  • L. BlankEmail author
  • Y. Carmel
Article

Abstract

Ecology seeks to study the factors affecting the distribution of species. In terms of their effects on species richness and composition, woody plants can be considered as dominant factors which extensively affect their environment, changing the distribution of resources in space and time. In structurally rich and diverse plant communities, such as Mediterranean ecosystems, the specific species that form the woody patch can be important. The specific woody species patch type may impose a set of abiotic conditions, which in turn would result in specific traits of the given herbaceous community under that patch. Evidence revealed in this study suggests that the general notion of a two-patch type (woody and non-woody) system for describing ecosystems is simplistic, and may be misleading. We found that patterns of herbaceous species richness and composition are related to specific woody species patch type. We found that herbaceous species richness under each patch type coincided with respective differences in solar radiation reaching the sub-canopy. Accounting for specific patch characteristics may largely enhance our understanding of plant community structure.

Keywords

Community structure Randomization tests Redundancy analysis Vegetation mosaic Weighted preference index 

Abbreviations

GLMM

Generalized Linear Mixed Model

PAR

Photosynthetic Active Radiation

PT

Patch Type

RDA

Re-dundancy Analysis

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2012_13010072_MOESM1_ESM.pdf (122 kb)
Supplementary material, approximately 125 KB.

References

  1. Agra, H. and G. Ne’eman. 2009. Woody species as landscape modulators: their effect on the herbaceous plants in a Mediterranean maquis. Plant Ecol. 205:165–177.CrossRefGoogle Scholar
  2. Arrington, D. A. and K. O. Winemiller. 2006. Habitat affinity, the seasonal flood pulse, and community assembly in the littoral zone of a Neotropical floodplain river. J. N. Am. Benthol. Soc. 25:126–141.CrossRefGoogle Scholar
  3. Bar Massada, A., O. Gabay, A. Perevolotsky, and Y. Carmel. 2008. Quantifying the effect of grazing and shrub-clearing on small scale spatial pattern of vegetation. Landsc. Ecol. 23:327–339.CrossRefGoogle Scholar
  4. Barth, R. C. and J. O. Klemmedson. 1978. Shrub-induced spatial patterns of dry matter, nitrogen, and organic carbon. Soil Sci. Soc. Am. J. 42:804–809.CrossRefGoogle Scholar
  5. Bates, D. 2007. lme4: Linear mixed-effects models using S4 classes. R package version 0.99875–9.Google Scholar
  6. Belsky, A. J. 1994. Influences of trees on savanna productivity: tests of shade, nutrients, and tree-grass competition. Ecology 75:922– 932.CrossRefGoogle Scholar
  7. Belsky, A. J., R. G. Amundson, J. M. Duxbury, S. J. Riha, A. R. Ali, and S. M. Mwonga. 1989. The effects of trees on their physical, chemical and biological environments in a semi-arid savanna in Kenya. J. Appl. Ecol. 26:1005–1024.CrossRefGoogle Scholar
  8. Boeken, B. 1989. Life histories of desert geophytes- the demographic consequences of reproductive biomass partitioning patterns. Oecol ogia 80:278–283.CrossRefGoogle Scholar
  9. Callaway, R. M. 1995. Positive interactions among plants. The Bot. Rev. 61:306–349.CrossRefGoogle Scholar
  10. Casado, M. A., I. Castro, L. Ramirez-Sanz, M. Costa-Tenorio, J. M. de Miguel, and F. D. Pineda. 2004. Herbaceous plant richness and vegetation cover in Mediterranean grasslands and shrublands. Plant Ecol. 170:83–91.CrossRefGoogle Scholar
  11. Charley, J. L. and N. E. West. 1975. Plant-induced soil chemical patterns in some shrub-dominated semi-desert ecosystems of Utah. J. Ecol. 63:945–963.CrossRefGoogle Scholar
  12. Clark, D. B., M. W. Palmer, and D. A. Clark. 1999. Edaphic factors and the landscape-scale distributions of tropical rain forest trees. Ecology 80:2662–2675.CrossRefGoogle Scholar
  13. Davies, S. J., P. A. Palmiotto, P. S. Ashton, H. S. Lee, and J. V. Lafrankie. 1998. Comparative ecology of 11 sympatric species of Macaranga in Borneo: tree distribution in relation to horizontal and vertical resource heterogeneity. J. Ecol. 86:662–673.CrossRefGoogle Scholar
  14. Feinbrun-Dothan, N., A. Danin, and U. Plitmann. 1998. Analytical flora of Eretz-Israel. Cana Publishing House, Jerusalem.Google Scholar
  15. Fernandez, C., B. Lelong, B. Vila, J. P. Mévy, C. Robles, S. Greff, S. Dupouyet, and A. Bousquet-Mélou. 2006. Potential allelopathic effect of Pinus halepensis in the secondary succession: an experimental approach. Chemoecology 16:97–105.CrossRefGoogle Scholar
  16. Floyd, M. E. 1983. Dioecy in five Pinus edulis populations in the southwestern United States. Am. Midl. Nat. 110:405–411.CrossRefGoogle Scholar
  17. Franklin, J. 1998. Predicting the distribution of shrub species in southern California from climate and terrain-derived variables. J. Veg. Sci. 9:733–748.CrossRefGoogle Scholar
  18. Gabay, O. 2008. Woody plants as landscape modulators in Mediterranean woodland. PhD dissertation, Ben-Gurion University of the Negev.Google Scholar
  19. Garcia, L. V., T. Maranon, A. Moreno, and L. Clemente. 1993. Above-ground biomass and species richness in a Mediterranean salt marsh. J. Veg. Sci. 4:417–424.CrossRefGoogle Scholar
  20. Gratani, L. and A. Bombelli. 2000. Correlation between leaf age and other leaf traits in three Mediterranean maquis shrub species: Quercus ilex, Phillyrea latifolia and Cistus incanus. Environ. Exp. Bot. 43:141–153.CrossRefGoogle Scholar
  21. Grytnes, J. A. 2000. Fine-scale vascular plant species richness in different alpine vegetation types: relationships with biomass and cover. J. Veg. Sci. 11:87–92.CrossRefGoogle Scholar
  22. Hadar, L., I. Noy-Meir, and A. Perevolotsky. 1999. The effect of shrub clearing and grazing on the composition of a Mediterranean plant community: functional groups versus species. J. Veg. Sci. 10:673–682.CrossRefGoogle Scholar
  23. Hernandez, P. A., C. H. Graham, L. L. Master, and D. L. Albert. 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785.CrossRefGoogle Scholar
  24. Holzapfel, C., K. Tielbörger, H. A. Parag, J. Kigel, and M. Sternberg. 2006. Annual plant–shrub interactions along an aridity gradient. Basic Appl. Ecol. 7:268–279.CrossRefGoogle Scholar
  25. House, J. I., S. Archer, D. D. Breshears, and R. J. Scholes. 2003. Conundrums in mixed woody-herbaceous plant systems. J. of Biogeogr. 30:1763–1777.CrossRefGoogle Scholar
  26. Karlson, R. H. and H. V. Cornell. 1998. Scale-dependent variation in local vs. regional effects on coral species richness. Ecol. Monogr. 68:259–274.CrossRefGoogle Scholar
  27. Ko, L. J. and P. B. Reich. 1993. Oak tree effects on soil and herbaceous vegetation in savannas and pastures in Wisconsin. Am. Midl . Nat.:31–42.Google Scholar
  28. Lande, R. 1982. A quantitative genetic theory of life history evolution. Ecology 63:607–615.CrossRefGoogle Scholar
  29. Lavorel, S., S. Diaz, J. H. C. Cornelissen, E. Garnier, S. P. Harrison, S. McIntyre, J. G. Pausas, N. Perez-Harguindeguy, C. Roumet, and U. C. 2007. Plant functional types: are we getting any closer to the holy grail? In J. G. Canadell, D. E. Pataki, and L. F. Pitelka, (eds.) Terrestrial Ecosystems in a Changing World. Springer Berlin, Heidelberg. pp. 171–186.Google Scholar
  30. Lawton, J. H. 1999. Are there general laws in ecology? Oikos 84:177–192.CrossRefGoogle Scholar
  31. Le Houerou, H. N. 1981. Impact of man and his animals on Mediterranean vegetation. In F. Di Castri, D.W. Goodall, and R.L. Specht, (eds.) Ecosystems of the World, II, Mediterranean Shrublands. Elsevier Scientific, Amsterdam. pp. 479–521Google Scholar
  32. Lepš , J. and P. Šmilauer. 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press.Google Scholar
  33. Lubchenco, J., A. M. Olson, L. B. Brubaker, S. R. Carpenter, M. M. Holland, S. P. Hubbell, S. A. Levin, J. A. MacMahon, P. A. Matson, and J. M. Melillo. 1991. The Sustainable Biosphere Initiative: an ecological research agenda: a report from the Ecological Society of America. Ecology 72:371–412.CrossRefGoogle Scholar
  34. Madrigal-Gonzalez, J., J. A. Garcia-Rodriguez, A. Puerto-Martin, B. Fernandez-Santos, and P. Alonso-Rojo. 2010. Scale-dependent effects of pines on the herbaceous layer diversity in a semi-arid mediterranean ecosystem. Community Ecol. 11:77–83.CrossRefGoogle Scholar
  35. Madrigal, J., J. A. García-Rodriguez, R. Julian, A. Puerto, and B. Fernández-Santos. 2008. Exploring the influence of shrubs on herbaceous communities in a Mediterranean climatic context of two spatial scales. Plant Ecol. 195:225–234.CrossRefGoogle Scholar
  36. Martens, S. N., D. D. Breshears, and C. W. Meyer. 2000. Spatial distributions of understory light along the grassland/forest continuum: effects of cover, height, and spatial pattern of tree canopies. Ecol. Model. 126:79–93.CrossRefGoogle Scholar
  37. Martens, S. N., D. D. Breshears, C. W. Meyer, and F. J. Barnes. 1997. Scales of aboveground and below-ground competition in a semiarid woodland detected from spatial pattern. J. Veg. Sci. 8:655– 664.CrossRefGoogle Scholar
  38. Mueller-Dombois, D. and H. Ellenberg. 1974. Aims and Methods of Vegetation Ecology. Wiley, New York, USA.Google Scholar
  39. Naveh, Z. 1975. The evolutionary significance of fire in the Mediterranean region. Plant Ecol. 29:199–208.CrossRefGoogle Scholar
  40. Naveh, Z. and J. Dan. 1973. The human degradation of Mediterranean landscapes in Israel. In F. di Castri and H. A. Mooney, (eds.) Mediterranean Type Ecosystems. Origin and Structurer. Springer-Verlag, New York, USA. pp. 370– 390.Google Scholar
  41. Naveh, Z. and P. Kutiel. 1986. Changes in the Mediterranean vegetation of Israel in response to human habitation and land use. In G. M. Woodwell, (eds.) The Earth in Transition, Patterns and Processes of Biotic Impoverishment. Cambridge University Press, Cambridge, UK. pp. 259–296.Google Scholar
  42. Noble, I. R. and H. Gitay. 1996. A functional classification for predicting the dynamics of landscapes. J. Veg. Sci. 7:329–336.CrossRefGoogle Scholar
  43. Noy-Meir, I., M. Gutman, and Y. Kaplan. 1989. Responses of Mediterranean grassland plants to grazing and protection. J. Ecol. 77:290–310.CrossRefGoogle Scholar
  44. Padien, D. J. and K. Lajtha. 1992. Plant spatial pattern and nutrient distribution in pinyon-juniper woodlands along an elevational gradient in northern New Mexico. Int. J. Plant Sci. 153:425–433.CrossRefGoogle Scholar
  45. Parker, V. T. and C. H. Muller. 1982. Vegetational and environmental changes beneath isolated live oak trees (Quercus agrifolia) in a California annual grassland. Am. Midl. Nat.:69–81.Google Scholar
  46. Pausas, J. G. and M. P. Austin. 2001. Patterns of plant species richness in relation to different environments: An appraisal. J. Veg. Sci. 12:153–166.CrossRefGoogle Scholar
  47. Perevolotsky, A., E. Ettinger, R. Schwartz-Tzachor, and R. Yonatan. 2002. Management of fuel breaks in the Israeli Mediterranean Ecosystem: the case of Ramat Hanadiv Park. J. Medit. Ecol. 3:13–22.Google Scholar
  48. Perevolotsky, A., R. Schwartz-Tzachor, R. Yonathan, and G. Ne’eman. 2011. Geophytes-herbivore interactions: reproduction and population dynamics of Anemone coronaria L. Plant Ecol. 212:563–571.CrossRefGoogle Scholar
  49. Pugnaire, F. I. 2001. Changes in plant interactions along a gradient of environmental stress. Oikos 93:42–49.CrossRefGoogle Scholar
  50. Schlesinger, W. H., J. A. Raikes, A. E. Hartley, and A. F. Cross. 1996. On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77:364–374.CrossRefGoogle Scholar
  51. Scholes, R. J. and S. R. Archer. 1997. Tree-grass interactions in savannas. Annu. Rev. Ecol. Syst. 28:517–544.CrossRefGoogle Scholar
  52. Shachak, M., B. Boeken, E. Groner, R. Kadmon, Y. Lubin, E. Meron, G. Ne’Eman, A. Perevolotsky, Y. Shkedy, and E. D. Ungar. 2008. Woody species as landscape modulators and their effect on biodiversity patterns. Bioscience 58:209–221.CrossRefGoogle Scholar
  53. Shmida, A. and M. V. Wilson. 1985. Biological determinants of species diversity. J. Biogeogr.:1–20.Google Scholar
  54. Shoshany, M. 2000. Satellite remote sensing of natural Mediterranean vegetation: a review within an ecological context. Prog. Phys. Geogr. 24:153–178.CrossRefGoogle Scholar
  55. Sternberg, M. and M. Shoshany. 2001. Aboveground biomass allocation and water content relationships in Mediterranean trees and shrubs in two climatological regions in Israel. Plant Ecol. 157:173–181.CrossRefGoogle Scholar
  56. ter Braak, C. J. F. and I. C. Prentice. 1988. A theory of gradient analysis. Adv. Ecol. Res. 18:271–313.CrossRefGoogle Scholar
  57. ter Braak, C. J. F. and P. Smilauer. 2002. CANOCO reference manual and user’s guide to CANOCO for windows: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, New York, USA.Google Scholar
  58. Tielbörger, K. and R. Kadmon. 1997. Relationships between shrubs and annual communities in a sandy desert ecosystem: a three-year study. Plant Ecol. 130:191–201.CrossRefGoogle Scholar
  59. Walker, B. H. 1992. Biological diversity and ecological redundancy. Conserv. Biol. 6:18–23.CrossRefGoogle Scholar
  60. Weltzin, J. F. and M. B. Coughenour. 1990. Savanna tree influence on understory vegetation and soil nutrients in northwestern Kenya. J. Veg. Sci. 1:325–332.CrossRefGoogle Scholar
  61. Wezel, A., J. L. Rajot, and C. Herbrig. 2000. Influence of shrubs on soil characteristics and their function in Sahelian agro-ecosystems in semi-arid Niger. J. Arid Environ. 44:383-398.CrossRefGoogle Scholar
  62. Wright, J. P., C. G. Jones, B. Boeken, and M. Shachak. 2006. Pre-dictability of ecosystem engineering effects on species richness across environmental variability and spatial scales. Ecology 94:815-824.CrossRefGoogle Scholar
  63. Zobel, M. 1997. The relative role of species pools in determining plant species richness. An alternative explanation of species coexistence? Trends Ecol. Evol. 12:266-269.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Faculty of Civil and Environmental EngineeringTechnion — Israel Institute of TechnologyHaifaIsrael

Personalised recommendations