Advertisement

Community Ecology

, Volume 12, Issue 2, pp 210–219 | Cite as

Spatial distribution of bivalves in relation to environmental conditions (middle Danube catchment, Hungary)

  • E. BódisEmail author
  • J. Nosek
  • N. Oertel
  • B. Tóth
  • E. Hornung
  • R. Sousa
Article

Abstract

The spatial distribution of bivalves in relation to environmental conditions was studied along a second- and third order stream ‒ medium-sized river (River Ipoly) ‒ large river (River Danube) continuum in the Hungarian Danube River system. Quantitative samples were collected four times in 2007 and a total of 1662 specimens, belonging to 22 bivalve species were identified. Among these species, two are endangered (Pseudanodonta complanata, Unio crassus) and five are invasive (Dreis-sena polymorpha, D. rostriformis bugensis, Corbicula fluminea, C. fluminalis, Anodonta woodiana) in Hungary. The higher density presented by Pisidium subtruncatum, P. supinum, P. henslowanum and C. fluminea suggests that these species may have a key role in this ecosystem. Three different faunal groups were distinguished but no significant temporal change was detected. The lowest density and diversity with two species (P. casertanum and P. personatum) occurred in streams. The highest density and diversity was found in the River Ipoly, in the side arms of the Danube and in the main arm of the Danube with sand and silt substrate, being dominated by P. subtruncatum and P. henslowanum. Moderate density and species richness were observed in the main arm of the Danube with pebble and stone substrate, being dominated by C. fluminea and S. rivicola. Ten environmental variables were found to have significant influence on the distribution of bivalves, the strongest explanatory factors being substrate types, current velocity and sedimentological characteristics.

Keywords

Bivalves Invasive species River Danube River Ipoly Spatial pattern 

Abbreviations

PCA

Principal Components Analysis

CCA

Canonical Correspondence Analysis

TBOM

total benthic organic matter

CBOM

benthic organic matter content in coarse fraction of sediment

FBOM

benthic organic matter content in fine fraction of sediment

VBOM

benthic organic matter content in very fine fraction of sediment

UBOM

benthic organic matter content in ultra fine fraction of sediment

Nomenclature

Checklist of the European Continental Mollusca (Falkner et al. 2001) and the catalogue of Fehér and Gubányi (2001) reflecting the Hungarian situation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaty, S.R., Fortino, K. and Hershey, A.E. 2006. Distribution and growth of benthic macroinvertebrates among different patch types of the littoral zones of two arctic lakes. Freshwater Biol. 51: 2347–2361.CrossRefGoogle Scholar
  2. Beisel, J.-N., Usseglio-Polatera, P., Thomas, S. and Moreteau, J.C. 1998. Stream community structure in relation to spatial variation: the influence of habitat characteristics. Hydrobiologia 389: 73–88.CrossRefGoogle Scholar
  3. Belanger, S., Farris, J., Cherry, D. and Cairns, J. 1985. Sediment preference of the freshwater Asiatic clam, Corbicula fluminea. Nautilus 99: 66–72.Google Scholar
  4. Bij de Vaate, A., Jazdzewski, K., Ketelaars, H.A.M., Gollasch, S. and Van der Velde, G. 2002. Geographical patterns in range extension of Poto-Caspian macroinvertebrate species in Europe. Can. J. Fish. Aquat. Sci. 59: 1159–1174.CrossRefGoogle Scholar
  5. Bilton, D.T., Freeland, J.R. and Okamura, B. 2001. Dispersal in freshwater invertebrates. Annu. Rev. Ecol. Syst. 32: 159–181.CrossRefGoogle Scholar
  6. Bogan, A.E. 1993. Freshwater bivalve extinctions (Mollusca: Unionoidae): a search for causes. Am. Zool. 33: 599–609.CrossRefGoogle Scholar
  7. Boycott, A. 1936. The habitats of freshwater mollusca in Britain. J. Anim. Ecol. 5: 116–186.CrossRefGoogle Scholar
  8. Bódis, E. 2007a. Spatio-temporal pattern of the small-sized mussel fauna in the Danube above Budapest. Acta Biol. Debr. Oecol. Hung. 16: 21–32.Google Scholar
  9. Bódis, E. 2007b. The biomass dynamics of Corbicula fluminea invasive mussel. Acta Biol. Debr. Oecol. Hung. 16: 9–20.Google Scholar
  10. Bódis, E., Nosek, J. and Oertel, N. 2008a. Spatio-temporal pattern of mussels (Corbiculidae, Dreissenidae, Sphaeriidae) in the water-system of the Hungarian Danube. Arch. Hydrobiol. Suppl. Large Rivers 18(1-2): 293–308.Google Scholar
  11. Bódis, E. 2008b. Contribution to the macroinvertebrate fauna of Hungarian Danube IV. Mussels (Bivalvia: Corbiculidae, Dreis-senidae, Sphaeriidae, Unionidae). Fol. Hist.-Nat. Mus. Matraensis 32: 57–68.Google Scholar
  12. Bódis, E., Nosek, J., Oertel, N., Tóth, B. and Fehér, Z. 2011. A Comparative study of two Corbicula morphs (Bivalvia, Corbiculidae) inhabiting River Danube. Internat. Rev. Hydrobiol. 96(3): 257–273.Google Scholar
  13. Brown, B.L. 2003. Spatial heterogeneity reduces temporal variability in stream insect communities. Ecol. Lett. 6: 316–325.CrossRefGoogle Scholar
  14. Brooks, A.J., Haeusler, T., Reinfelds, I. and Williams, S. 2005. Hydraulic microhabitats and distribution of macroinvertebrate assemblages in riffles. Freshwater Biol. 50: 331–344.CrossRefGoogle Scholar
  15. Cataldo, D. and Boltovskoy, D. 1999. Population dynamics of Corbicula fluminea (Bivalvia) in the Paraná River Delta (Argentina). Hydrobiologia 380: 153–169.CrossRefGoogle Scholar
  16. Clarke, K.R. and Green, R.H. 1988. Statistical design and analysis for a biological effects study. Mar. Ecol. Prog. Ser. 46: 213–226.CrossRefGoogle Scholar
  17. Clarke, K.R. and Warwick, R.M. 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, second ed. PRIMER-E Ltd., Plymouth Marine Laboratory, UK.Google Scholar
  18. Csányi, B. 1998–1999. Spreading invaders along the Danubian high-way: first record of Corbicula fluminea and C. fluminalis in Hungary. Fol. Hist. Nat.-Mus. Matr. 23: 343–345.Google Scholar
  19. Dillon, R.T. 2000. The Ecology of Freshwater Molluscs. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  20. Eedy, R.I. and Giberson, D.J. 2007. Macroinvertebrate distribution in a reach of a north temperate eastern Canadian river: Relative importance of detritus, substrate and flow. Arch. Hydrobiol. 169(2): 101–114.Google Scholar
  21. Falkner, G., Bank, R. A. and Proschwitz, T. von 2001. Check-list of the non-marine molluscan species-group taxa of states of northern, atlantic and central Europe (CLECOM I). Heldia 4: 1–76.Google Scholar
  22. Fehér, Z. and Gubányi, A. 2001. The Distribution of Hungarian Molluscs. The Catalogue of the Mollusca Collection of the Hungarian Natural History Museum, Budapest.Google Scholar
  23. Fehér, Z., Majoros, G. and Varga, A. 2004. A scoring method for the assessment of rarity and conservation value of the Hungarian freshwater molluscs. Heldia 6: 127–140.Google Scholar
  24. Felföldy, L. 1987. The Biological Water Quality, 4th Revised edn. Vízügyi Hidrobiológia 16, VGI Budapest (in Hungarian).Google Scholar
  25. Gelwick, F.P. 1990. Longitudinal and temporal comparisons of riffle and pool fish assemblages in a North-eastern Oklahoma Ozark Stream. Copeia 1990: 1072–1082.CrossRefGoogle Scholar
  26. Grossman, G.D., Ratajzak, R.E., Crawford, M. and Freeman, M.C. 1998. Assemblage organisation in stream fishes: effects of environmental variation and interspecific interactions. Ecol. Monogr. 68: 395–420.CrossRefGoogle Scholar
  27. Haas, G., Brunke, M. and Streit, B. 2002. Fast turnover in dominance of exotic species in the Rhine river determines biodiversity and ecosystem function: an affair between amphipods and mussels. In: Leppakoski E. et al. (eds.), Invasive Aquatic Species of Europe, Kluwer, Netherlands. pp. 426–432.Google Scholar
  28. Hammer, O., Harper, D.A.T. and Ryan, P.D. 2001. Past: paleon-tological statistics software package for education and data analysis. Palaeontologia Electronica, vol. 4, issue 1, art. 4.Google Scholar
  29. Heino, J., Louhi, P. and Muotka, T. 2004. Identifying the scales of variability in stream macroinvertebrate abundance, functional composition and assemblage structure. Freshwater Biol. 49: 1230–1239.Google Scholar
  30. Holland-Bartels, L.E. 1990. Physical factors and their influence on the mussel fauna of a main channel border habitat of the upper Mississippi River. J. N. Am. Benthol. Soc. 9: 327–335.CrossRefGoogle Scholar
  31. Huryn, A.D. and Wallace, J.B. 1987. Local geomorphology as determinant of macrofaunal production in a mountain stream. Ecology 68: 1932–1942.CrossRefGoogle Scholar
  32. Jurkiewicz-Karnkowska, E. and Zbikowski, J. 2004. Long-term changes and spatial variability of mollusc communities in selected habitats within the dam reservoir (Wloclawek Reservoir, Vistula River, Central Poland). Pol. J. Ecol. 52(4): 491–503.Google Scholar
  33. Lydeard, C., Cowie, R.H., Ponder, W.F. et al. 2004. The global decline of nonmarine molluscs. Bioscience 54: 321–330.CrossRefGoogle Scholar
  34. Martinez, B., Velasco, J., Suárez M. L., Vidal-Abarca M. R. 1998. Benthic organic matter dynamics in an intermittent stream in South-East Spain. Arch. Hydrobiol. 141(3): 303–320.Google Scholar
  35. Meier-Brook C. 1969. Substrate relations in some Pisidium species (Eulamellibranchiata: Sphaeriidae). Malacologia 9: 121–125.Google Scholar
  36. Minshall, G.W., Cummins, K.W., Petersen, R.C., Cushing, C.E., Bruns, D.A., Sedell, J.R. and Vannote, R.L. 1985. Developments in stream ecosystem theory. Can. J. Fish. Aquat. Sci. 42: 1045–1055.CrossRefGoogle Scholar
  37. Miserendino, M.L. 2009. Effects of flow regulation, basin characteristics and land-use on macroinvertebrate communities in a large arid Patagonian river. Biodivers. Conserv. 18: 1921–1943.CrossRefGoogle Scholar
  38. Mouthon J. 1981. Typologie des Mollusquses des eaux courantes. Organisation biotypologique et groupements socioecologiques. Ann. Limnol. 17(2): 143–162.Google Scholar
  39. Mouthon, J. 1999. Longitudinal organisation of the mollusc species in a theoretical French river, Hydrobiologia 390: 117–128.Google Scholar
  40. Nosek, J. and Oertel, N. 2008. Similarity patterns of macroinvertebrate communities in the Hungarian Danube and adjecent wetlands (Szigetköz and Gemenc). Arch. Hydrobiol. Suppl. Large Rivers 18(1–2): 243–256.Google Scholar
  41. Pardo, I. and Armitage, P.D. 1997. Species assemblages as descriptors of mesohabitats. Hydrobiologia 344: 111–128.CrossRefGoogle Scholar
  42. Phelps, H. L. 1994. The Asiatic clam (Corbicula fluminea) invasion and system-level ecological change in the Potomac River Estuary near Washington, D. C. Estuaries 17(3): 614–621.Google Scholar
  43. Richnovszky, A. 1967. Data to the Mollusk Fauna of the Flood Area of the Danube. Opusc. Zool. 7(1): 195–205.Google Scholar
  44. Richnovszky, A. and Pintér, L. 1979. Freshwater Snails and Bivalves (Mollusca). In: Felföldy L. (series ed.), Vízügyi Hidrológia 6, VIZDOK Budapest.Google Scholar
  45. Rempel, L.L., Richardson, J.S. and Healey, M.C. 2000. Macroinver-tebrate community structure along gradients of hydraulic and sedimentary conditions in a large gravel-bed river. Freshwater Biol. 45: 7–73.CrossRefGoogle Scholar
  46. Sousa, R., Antunes, C. and Guilhermino, L. 2007. Species composition and monthly variation of the Molluscan fauna in the fresh-water subtidal area of the River Minho estuary. Estuar. Coast. Shelf Sci. 75: 90–100.Google Scholar
  47. Sousa, R., Dias, S., Freitas, V. and Antunes, C. 2008a. Subtidal macrozoobenthic assemblages along the River Minho estuarine gradient (north-west Iberian Peninsula). Aquat. Conserv. 18: 1063–1077.CrossRefGoogle Scholar
  48. Sousa, R., Antunes, C. and Guilhermino, L. 2008b. Ecology of the invasive Asian clam Corbicula fluminea (Müller, 1774) in aquatic ecosystems: an overview. Ann. Limnol. 44: 85–94.Google Scholar
  49. Sousa, R., Nogueira, A.J.A., Antunes, C. and Guilhermino, L. 2008c. Growth and production of Pisidium amnicum (Müller, 1774) in the freshwater tidal area of the River Minho estuary. Estuar. Coast. Shelf Sci. 79: 467–474.Google Scholar
  50. Sousa, R., Morais, P., Antunes, C. and Guilhermino, L. 2008d. Factors affecting Pisidium amnicum (Müller, 1774; Bivalvia: Sphaeriidae) distribution in the River Minho estuary: consequences for its conservation. Estuar. Coast 31: 1198–1207.CrossRefGoogle Scholar
  51. Sousa, R., Gutiérrez, J.L. and Aldridge D.C. 2009. Non-indigenous invasive bivalves as ecosystem engineers. Biol. Invasions 11: 2367–2385.CrossRefGoogle Scholar
  52. Strayer, D.L. 1983. The effects of surface geology and stream size on freshwater mussel (Bivalvia, Unionidae) distribution in southeastern Michigan, U.S.A. Freshwater Biol. 13: 253–264.CrossRefGoogle Scholar
  53. Strayer, D.L., Downing, J.A., Haag, W.R., King, T.L., Layzer, J.B., Newton, T.J. and Nichols, S.J. 2004. Changing perspectives on pearly mussels, North America’s most imperiled animals. Bio-Science 54: 429–439.Google Scholar
  54. Szekeres, J., Molnár, M., Csányi, B. and Szalóky, Z. 2009. Macro-zoobenthon investigations on two Danube cross-sections (Rajka and Szob) with dredging method. Acta Biol. Debr. Oecol. Hung. 20: 209–218.Google Scholar
  55. Ter Braak, C.J.F. and Smilauer, P. 2002. CANOCO Reference manual and CanoDraw fro Windows User’s guide: Software for Canonical Community Ordination (ver. 4.5) Biometris, Wageningen & Ceské Budejovice.Google Scholar
  56. Tóth, M. and Bába, K. 1981. The mollusca fauna of the Tisza and its tributaries. Tiscia (Szeged) 16: 169–181.Google Scholar
  57. Tőry, K. 1952. The River Danube and its Regulation. Akadémiai Kiadó, Budapest.Google Scholar
  58. Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R. and Cushing, C.E. 1980. The river continuum concept. Can. J. Fish. Aquat.Sci.37: 130–137.Google Scholar
  59. Varga, A., Csányi, B., and Majoros, G. 1998–1999. Data on distribution of mussel species in Hungarian rivers based on faunal research of the last decade II. (Mollusca-Bivalvia). Fol. Hist.-Nat. Mus. Matraensis 23: 347–367.Google Scholar
  60. Varga, A. and Csányi, B. 1996. Malacological data from the upper part of the Danube in Hungary (1994). Malacol. Newsletter 15: 77–88.Google Scholar
  61. Vaughn, C.C. and Hakenkamp, C.C. 2001. The functional role of burrowing bivalves in freshwater ecosystems. Freshwater Biol. 46: 1431–1446.CrossRefGoogle Scholar
  62. Vaughn, C.C. and Spooner, D.E. 2006. Scale-dependent associations between native freshwater mussels and invasive Corbicula. Hydrobiologia 568: 331–339.Google Scholar
  63. Vernaux, J. 1973. Cours d’eau de Franche-Comté (massif du Jura) ‒ recherches écologiques sur le réseau hydrographique du Doubs. Essai de biotypologie. These Doct. Sci. Nat., Univ. Besancon: 1–257.Google Scholar
  64. Zieritz, A. and Waringer, J. 2008. Distribution patterns and habitat characterization of aquatic Mollusca in the Weidlingbach near Vienna, Austria. Arch. Hydrobiol., Suppl. Large Rivers 18: 271–292.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2019

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • E. Bódis
    • 1
    • 2
    Email author
  • J. Nosek
    • 1
  • N. Oertel
    • 1
  • B. Tóth
    • 1
  • E. Hornung
    • 2
  • R. Sousa
    • 3
    • 4
  1. 1.Hungarian Danube Research Station of the Hungarian Academy of SciencesGödHungary
  2. 2.Szent Istvan University, Faculty of Veterinary Science, Department of EcologyInstitute for BiologyBudapestHungary
  3. 3.CBMA ‒ Centre of Molecular and Environmental Biology, Department of BiologyUniversity of Minho, Campus de GualtarBragaPortugal
  4. 4.CIMAR-LA/CIIMAR ‒ Centre of Marine and Environmental ResearchPortoPortugal

Personalised recommendations