Advertisement

Community Ecology

, Volume 12, Issue 2, pp 227–233 | Cite as

Penetration of weeds into the herbaceous understorey and soil seed bank of a Turkey oak-sessile oak forest in Hungary

  • G. Koncz
  • P. TörökEmail author
  • M. Papp
  • G. Matus
  • B. Tóthmérész
Article

Abstract

Intensification of land use in the last few decades resulted in an increased rate of fragmentation of natural forest habitats. With decreased patch size but increased total borderline length the influence of the surroundings also increased. The extent of influence is especially crucial where the forest stands are adjacent to agricultural lands. We studied the vegetation (cover) and seed bank (soil samples, seedling emergence) along adjacent stands of an abandoned vineyard and edge and interior of an oak forest community (Quercetum petraeae-cerris) widespread in Central-Europe, using five transects (16 m2 plots along each transect). We asked the following questions: (i) How do vegetation and seed bank composition differ between the vineyard and forest interior and (ii) which weeds are able to penetrate into the forest herbaceous understorey vegetation and seed banks from the vineyard? In total, 15 phanaerophytes and 147 herbs were detected. Negatively associated with canopy shading, herb cover proved the lowest in the forest inferior. Few weeds and other ruderals recorded in vineyard penetrated into the forest interior. Mean seed density decreased one order of magnitude from the vineyard to the forest interior (from 20,831 to 2,159 seed/m2). The seed banks of the abandoned vineyard and edge and forest interior were dominated by ruderals, but decreasing proportion of weeds was detected from the vineyard to the forest interior. Characteristic forest herbs possessed at most sparse seed banks. Our results suggest that high canopy cover mitigates the negative impact of surrounding weedy vegetation on the forest herb layer. Therefore, the effect of surroundings is detectable mostly in the seed banks. We can assume that the formation of an increased ruderal herb cover can be foreseen if canopy opens, because the local propagule sources of forest species are missing from vegetation and soil seed banks.

Keywords

Field margin Forest herbs Invasion Plant strategy Ruderal species 

Abbreviations

SBT

Social Behaviour Types

R

ruderals

RC

ruderal competitors

AC

adventive competitors

W

short-lived weeds

DT

disturbance tolerants

G

generalists

C

competitors

S

specialists

NP

natural pioneers

NMDS

Non-metric Multidimensional Scaling

SBD

seed bank density

MC

mean cover

Nomenclature

Simon (2000) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aide, T.M. and J. Cavelier. 1994. Barriers to lowland tropical forest restoration in the Sierra Nevada De Santa Marta, Colombia. Restor. Ecol. 2: 219–229.CrossRefGoogle Scholar
  2. Andersen, M.C. 1993. Diaspore morphology and seed dispersal in several wind-dispersed Asteraceae. Am. J. Bot. 80: 487–492.CrossRefGoogle Scholar
  3. Benítez-Malvido, J. and M. Martínez-Ramos. 2003. Impact of forest fragmentation on understory plant species richness in Amazonia. Conserv. Biol. 17: 389–400.CrossRefGoogle Scholar
  4. Borhidi, A. 1995. Social behaviour types, their naturalness and relative ecological indicator values of the higher plants of the Hungarian Flora. Acta Bot. Hung. 39: 97–182.Google Scholar
  5. Borhidi, A. 2003. Magyarország növénytársulásai [Plant associations of Hungary]. Akadémiai Kiadó, Budapest (in Hungarian).Google Scholar
  6. Bossuyt, B. and H. Hermy. 2001. Influence of land use history on seed banks in European temperate forest ecosystems: a review. Ecography 24: 225–238.CrossRefGoogle Scholar
  7. Bossuyt B., M. Heyn and M. Hermy. 2002. Seed bank and vegetation composition of forest stands of varying age in central Belgium: consequences for regeneration of ancient forest vegetation. Plant Ecol. 162: 33–48.CrossRefGoogle Scholar
  8. Bossuyt, B. and O. Honnay. 2008. Can the seed bank be used for ecological restoration? An overview of seedbank characteristics in European communities. J. Veg. Sci. 19: 875–884.CrossRefGoogle Scholar
  9. Brothers, T.S. and A. Springarn. 1992. Forest fragmentation and alien plant invasion of central Indiana old-growth forests, Conserv. Biol. 6: 91–100.Google Scholar
  10. Cadenasso M.L., M.M. Traynor and S.T.A. Pickett 1997. Functional location of forest edges: gradients of multiple physical factors. Can. J. Forest Res. 27: 774–782.CrossRefGoogle Scholar
  11. Cadenasso, M.L. and S.T.A. Pickett 2001. Effect of edge structure on the flux of species into forest interiors. Conserv. Biol. 15: 91–97.CrossRefGoogle Scholar
  12. Camargo, J.L.C and V. Kapos. 1995. Complex edge effects on soil moisture and microclimate in central Amazonian forest. J. Trop. Ecol. 11: 205–221.CrossRefGoogle Scholar
  13. Cook, R. 1980. The biology of seeds in the soil. In: Solbrig, O.T. (ed.), Demography and Evolution of Plant Populations. University of California Press, Berkeley. pp. 107–129.Google Scholar
  14. Csapody, V. 1968. Keimlingsbestimmungsbuch der Dicotyledonen. Akadémiai Kiadó, Budapest.Google Scholar
  15. Cavers, P.B. and D.L. Benoit. 1989. Seed banks in arable land. In: Leck, M.A., T.V. Parker and R.L. Simpson (eds.), Ecology of Soil Seed Banks. Academic Press, London. pp. 309–328.Google Scholar
  16. Csontos, P., A. Horánszky, T. Kalapos and L. Lőkős. 1996a. Seed bank of Pinus nigra plantations in dolomite rock grassland habitats, and its implications for restoring grassland vegetation. Ann. Hist.-Nat. Mus. Natn. Hung. 88: 69–77.Google Scholar
  17. Csontos, P. 1996b. Az aljnövényzet változásai cseres-tölgyes erdõk regenerációs szukcessziójában. (Regeneration succession of sessile oak - Turkey oak forests: Processes in the herb layer). Scientia Kiadó, Budapest. (in Hungarian)Google Scholar
  18. Csontos, P., J. Tamás and T. Kalapos 1997. Soil seed banks and vegetation recovery on dolomite hills in Hungary. Acta Bot. Hung. 40: 35–43.Google Scholar
  19. Csontos, P. 2001. A természetes magbank kutatásának módszerei. (Methods of studying natural seed banks). Scientia Kiadó, Budapest. (in Hungarian)Google Scholar
  20. Csontos P. 2006. A magbank-ökológia alapjai, a hazai flóra magökológiai vizsgálata. [Fundamentals of seed bank ecology, the seed ecological study of the Hungarian flora] D.Sc. Dissertation, MTA Kézirattár, Budapest. (in Hungarian)Google Scholar
  21. Csontos, P. 2007. Seed banks: ecological definitions and sampling considerations. Community Ecol. 8: 75–85.CrossRefGoogle Scholar
  22. Csontos, P. 2010a. A természetes magbank, valamint a hazai flóra magökológiai vizsgálatának új eredményei. [Some new results improving the knowledge of the natural soil seed banks of the Hungarian flora] Kanitzia 17: 77–110.Google Scholar
  23. Csontos, P. 2010b. Light ecology and regeneration on clearings of Turkey oak-sessile oak forests in the Visegrád Mountains, Hungary. Acta Bot. Hung. 52: 265–286.CrossRefGoogle Scholar
  24. Devlaeminck, R., B. Bossuyt and M. Hermy. 2005. Inflow of seeds through the forest edge: evidence from seed bank and vegetation patterns. Plant. Ecol. 176: 1–17.CrossRefGoogle Scholar
  25. Didham, R.K. and J.H. Lawton 1999. Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica 31: 17–30.Google Scholar
  26. Eriksson, O., S.A.O. Cousins and H.H. Bruun. 2002. Land-use history and fragmentation of traditionally managed grasslands in Scandinavia. J. Veg. Sci. 13: 743–748.CrossRefGoogle Scholar
  27. Gehlhausen, S.M., M.W. Schwartz and C.K. Augspurger. 2000. Vegetation and microclimatic edge effects in two mixed-mesophytic forests fragments. Plant. Ecol. 147: 21–35.CrossRefGoogle Scholar
  28. Grime, J.P. 1979. Plant Strategies and Vegetation Processes. Wiley, Chichester.Google Scholar
  29. Hall, J.B. and M.D. Swaine. 1980. Seed stocks in Ghanaian forest soils. Biotropica 12: 256–263.CrossRefGoogle Scholar
  30. Halpern, C.B., S.A. Evans and S. Nielson. 1999. Soil seed banks in young closed-canopy forests of the Olympic Peninsula, Washington: potential contributions to understory reinitiation. Can. J. Bot. 77: 922–935.Google Scholar
  31. Harper, J.L. 1977. Population Biology of Plants. London, Academic Press.Google Scholar
  32. Honnay, O., K. Verheyen and M. Hermy. 2002. Permeability of ancient forest edges for weedy plant species invasion. Forest Ecol. Manag. 161: 109–122.CrossRefGoogle Scholar
  33. Jacquemyn, H., J. Butaye and H. Hermy. 2001. Forest plant species richness in small, fragmented mixed deciduous forest patches: role of area, time and dispersal limitation. J. Biogeogr. 28: 1–12.CrossRefGoogle Scholar
  34. Jakucs, P. 1985. Results of „Síkfõkút Project”. Akadémiai Kiadó, Budapest.Google Scholar
  35. Kjellsson, G. 1992. Seed banks in Danish deciduous forests: species composition, seed influx and distribution pattern in soil. Ecography 15: 86–100.CrossRefGoogle Scholar
  36. Koncz, G., Papp, M., Török, P., Kotroczó, Zs., Krakomperger, Zs., Matus, G. and B. Tóthmérész. 2010. The role of seed bank in the dynamics of understory in a turkey-sessile oak forest in Hungary. Acta Biol Hung 61(Suppl.): 109–119.Google Scholar
  37. Kotroczó, Zs., I. Fekete, J.A. Tóth, B. Tóthmérész and S. Balázsy. 2008. Effect of leaf- and root-litter manipulation for carbon-dioxide efflux in forest soil. Cereal Res. Commun. 36 (Suppl.): 663–666.Google Scholar
  38. Krakomperger, Zs., J.A. Tóth, Cs. Varga and B. Tóthmérész. 2008. The effect of litter input on soil enzyme activity in an oak forest. Cereal Res. Commun. 36 (Suppl.): 322–326.Google Scholar
  39. Laurence, W.F. and E. Yensen. 1991. Predicting the impacts of edge effects in fragmented habitats. Biol. Conserv. 55: 77–92.CrossRefGoogle Scholar
  40. Leckie, S., M. Vellend, G. Bell, M.J. Waterway and M.J. Lechowicz. 2000. The seed bank in an old-growth, temperate deciduous forest. Can. J. Bot. 78: 181–192.Google Scholar
  41. Legendre, P. and L. Legendre 1998. Numerical Ecology. Elsevier, Amsterdam.Google Scholar
  42. Lin, L. and M. Cao. 2009. Edge effects on soil seed banks and understory vegetation in subtropical and tropical forests in Yunnan, SW China. Forest Ecol. Manag. 257: 1344–1352.CrossRefGoogle Scholar
  43. Mitlacher, K., P. Poschlod, E. Rosén and J.P. Bakker. 2002. Restoration of wooded meadows – a comparative analysis along a chronosequence on Öland Sweden. J. Veg. Sci. 5: 63–73.Google Scholar
  44. Oosterhoorn, M. and M. Kappelle. 2000. Vegetation structure and composition along an interior-edge-exterior gradient in a Costa Rican montane cloud forest. Forest Ecol. Manag. 126: 291–307.CrossRefGoogle Scholar
  45. Palik, B.J. and P.G. Murphy. 1990. Disturbance versus edge effects in sugar-maple/beech forest fragments. Forest Ecol. Manag. 32: 187–202.CrossRefGoogle Scholar
  46. Pickett, S.T.A. and M.J. McDonell. 1989. Seed bank dynamics in temperate deciduous forest. In: Leck, M.A., V.T. Parker and R.L. Simpson (eds.), Ecology of Soil Seed Banks. Academic Press, London. pp. 123–147.Google Scholar
  47. Priestly, D.A. 1986. Seed Aging: Implications for Seed Storage and Persistence in the Soil. Cornell University Press, Ithaca.Google Scholar
  48. R Development Core Team 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
  49. Ranney, J.W., M.C. Bruner and J.B. Levenson. 1981. The importance of edge in the structure and dynamics of forest islands. In: R.L. Burgess and D.M. Sharpe (eds.), Forest Island Dynamics in Man Dominated Landscapes. Springer , New York. pp. 67–95.Google Scholar
  50. Simon, T. 2000. A magyarországi edényes flóra határozója [Vascular flora of Hungary]. Nemzeti Tankönyvkiadó, Budapest. (in Hungarian)Google Scholar
  51. Thompson, K., J. P. Bakker, and R. M. Bekker. 1997. Soil Seed Banks of North West Europe: Methodology, Density and Longevity. Cambridge University Press, Cambridge.Google Scholar
  52. ter Heerdt, G.N.J., G.L. Verweij, R.M. Bekker and J.P. Bakker. 1996. An improved method for seed bank analysis: seedling emergence after removing the soil by sieving. Funct. Ecol. 10: 144–151.CrossRefGoogle Scholar
  53. Wales, B.A. 1972. Vegetation analysis of north and south edges in a mature oak-hickory forest. Ecol. Monogr. 42: 451–471.CrossRefGoogle Scholar
  54. Warr, J.S., M. Kent and K. Thompson. 1994. Seed bank composition and variability in five woodlands in southwest England. J. Biogeogr. 21: 151–168.CrossRefGoogle Scholar
  55. Williams-Linera, G. 1990. Vegetation structure and environmental conditions of forest edges in Panama. J. Ecol. 78: 356–373.CrossRefGoogle Scholar
  56. Vlahos, S. and D.T. Bell 1986. Soil seed-bank components of the northern jarrah forest of Western Australia. Aust. J. Ecol. 11: 171–179.CrossRefGoogle Scholar
  57. Zar, J.H. 1999. Biostatistical Analysis. Prentice Hall, Upper Saddle River.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2019

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • G. Koncz
    • 1
  • P. Török
    • 1
    Email author
  • M. Papp
    • 2
  • G. Matus
    • 2
  • B. Tóthmérész
    • 1
  1. 1.Department of EcologyUniversity of DebrecenDebrecenHungary
  2. 2.Department of BotanyUniversity of DebrecenDebrecenHungary

Personalised recommendations