Community Ecology

, Volume 12, Issue 2, pp 220–226 | Cite as

Plant species diversity in dry coastal dunes of the southern Baltic coast

  • J. PeyratEmail author
  • A. Fichtner


This study describes plant species diversity in well preserved dry coastal dune systems along the southern Baltic coast. Variations in diversity and in distributional character of plant species and plant communities throughout the study areas result mainly because of the interplay between plant succession, exposure, disturbance and resource availability. Environmental indicator values, used to describe dynamics in dune habitats, show a decline of light and temperature with increased distance to the sea, accompanied by higher soil moisture due to accumulation of organic matter. Species richness and species diversity showed a humped-shaped curve along a coast-to-inland gradient. The highest species richness of vascular plants and cryp-togamic species were found in plant communities of grey dunes at intermediate levels of environmental and disturbance gradients, which confirms the intermediate disturbance theory.


Biodiversity Environmental Coastal zonation Heterogeneity Vegetation dynamics 


Flora Europaea (Royal Botanic Garden Edinburgh 2009) for vascular plants Hill (2008) for bryophytes and Santesson et al. (2004) for lichens the International Code of Phytosociological Nomenclature for plant communities (Weber et al. 2000, see Berg et al. 2004) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2011_1202220_MOESM1_ESM.pdf (65 kb)
Supplementary material, approximately 66 KB.


  1. Acosta, A., M.L. Carranza and C.F. Izzi. 2009. Are there habitats that contribute best to plant species diversity in coastal dunes? Biodivers. Conserv. 18: 1087–1098.CrossRefGoogle Scholar
  2. Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26: 31–46.Google Scholar
  3. Berg, C., J. Dengler, A. Abdank and M. Isermann. 2004: Die Pflanzengesellschaften Mecklenburg-Vorpommerns und ihre Gefährdung. Weissdorn-Verlag, Jena.Google Scholar
  4. Bohn, U. and U. Gollup. 2003. Karte der natürlichen Vegetation Europas (Map of the natural vegetation of Europe). Landwirtschaftsverlag, Münster.Google Scholar
  5. Carboni, M., R. Santoro and A.T.R. Acosta. 2010. Are some plant communities of the coastal dune zonation more succeptible to alien plant invasion? J. Plant Ecol. 3: 139–147.CrossRefGoogle Scholar
  6. Connell, J.H. 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302–1310.CrossRefGoogle Scholar
  7. Doing, H. 1985. Coastal fore-dune zonation and succession in various parts of the world. Vegetatio 61: 65–75.CrossRefGoogle Scholar
  8. Dolnik, C., J. Peyrat, A. Volodina and A. Sokolov. 2011. Neophytic Corispermum pallasii (Stev.) (Chenopodiaceae) invading migrating dunes of the southern coast of the Baltic Sea. Pol. J. Ecol. 59: 17–25.Google Scholar
  9. Ellenberg, H. 2001. Zeigerwerte von Pflanzen in Mitteleuropa. Goltze, Göttingen.Google Scholar
  10. Frederiksen, L., J. Kollmann, P. Vestergaard and H.H. Bruun. 2006. A multivariate approach to plant community distribution in the coastal dune zonation of NW Denmark. Phytocoenologia 36: 321–342.CrossRefGoogle Scholar
  11. Hill, M.O. 1979. TWINSPAN: A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Cornell University, Ithaca.Google Scholar
  12. Hill, M.O. 2008: Atlas of the Bryophytes of Great Britain and Ireland. Harley, Colchester.Google Scholar
  13. Hobbs, R.J. and L.F. Huenneke. 1992. Disturbance, diversity, and invasion: implications for conservation. Conserv. Biol. 6: 324–337.Google Scholar
  14. Isermann, M. 1996. Vegetationszonierung auf dem Darß und auf dem Gellen an der Ostseeküste Mecklenburg-Vorpommerns. Abh. Nat. Ver. Brem. 43: 551–556.Google Scholar
  15. Isermann, M. 2005. Soil pH and species diversity in coastal dunes. Plant Ecol. 178: 111–120.CrossRefGoogle Scholar
  16. Jentsch, A. and W. Beyschlag. 2003. Vegetation ecology of dry acidic grasslands in the lowland area of central Europe. Flora 198:3–25.CrossRefGoogle Scholar
  17. Kuiters, A.T., K. Kramer, H.G.J.M. van der Hagen and J.H.J. Schaminée. 2009. Plant diversity, species turnover and shifts in functional traits in coastal dune vegetation: Results from permanent plots over a 52-year period. J. Veg. Sci. 20: 1053–1063.CrossRefGoogle Scholar
  18. Kruskal, J.B. 1964. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29: 115–129.CrossRefGoogle Scholar
  19. Labuz, T.A. 2004. Coastal dune development under natural and human influence on Świna Gate Barrier (Polish coast of Pomeranian Bay). Coastline Reports 2: 129–138.Google Scholar
  20. Labuz, T.A. and R. Grunewald. 2007. Studies on vegetation cover of the youngest dunes of the Świna Gate Barrier (Western Polish Coast). J. Coastal Res. 23: 160–172.CrossRefGoogle Scholar
  21. Lichter, J. 1998. Primary succession and forest development on coastal Lake Michigan sand dunes. Ecol. Monogr. 68: 487–510.Google Scholar
  22. Lichter, J. 2000. Colonization constraints during primary succession on coastal Lake Michigan. J. Ecol. 88: 825–839.CrossRefGoogle Scholar
  23. Londo, G. 1976. The decimal scale for relevés of permanent quadrats. Vegetatio 33: 61–64.CrossRefGoogle Scholar
  24. Margalef, R. 1963. On certain unifying principles in ecology. Am. Nat. 97: 357–374.CrossRefGoogle Scholar
  25. Matuszkiewicz, W. 1980. Synopsis und geographische Analyse der Pflanzengesellschaften von Polen. Mitt. Floristisch-soziologische Arbeitsgemein. 22: 19–50.Google Scholar
  26. Miller, T.E., E.S. Gornish and H.L. Buckley. 2010. Climate and coastal dune vegetation: disturbance, recovery, and succession. Plant Ecol. 206: 97–104.CrossRefGoogle Scholar
  27. Mills, M.H. and M.W. Schwartz. 2005. Rare plants at the extremes of distribution: broadly and narrowly distributed rare species. Biodivers. Conserv. 14: 1401–1420.CrossRefGoogle Scholar
  28. Morrison, R.G. and G.A. Yarranton. 1974. Vegetational heterogeneity during a primary sand dune succession. Can. J. Bot. 52: 397–410.CrossRefGoogle Scholar
  29. Mosyakin, S.L. 1995. New taxa of Corispermum L. (Chenopodiaceae), with preliminary comments on taxonomy of the genus in North America. Novon 5: 340–353.CrossRefGoogle Scholar
  30. Mosyakin, S.L. 2006. Corispermum L. In: N.N. Tzvelev and D.V. Geltman (eds.), Flora of Russia – The European Part and Bordering Regions. Taylor & Francis, London. pp. 85–95.Google Scholar
  31. Oksanen, J., R. Kindt, P. Legendre, B. O’Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens and H. Wagner. 2009. Vegan: community ecology package. URL:,
  32. Piotrowska, H. 1988. The dynamics of the dune vegetation on the Polish Baltic Coast. Vegetatio 77: 169–175.Google Scholar
  33. R Development Core Team. 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
  34. Remke E., E. Brouwer, A. Kooijman, I. Blindow and J.G.M. Roelofs. 2009. Low atmospheric nitrogen loads lead to grass encroachment in coastal dunes, but only on acid soils. Ecosystems 12: 1173–1188.CrossRefGoogle Scholar
  35. Royal Botanic Garden Edinburgh. 2009. Flora Europaea. assessed 14 May 2009.
  36. Santesson, R. 2004. The lichens and lichenicolous fungi of Sweden and Norway. SBT, Lund.Google Scholar
  37. Schiewer, U. 2008. Ecology of Baltic Waters. Springer, Berlin.CrossRefGoogle Scholar
  38. Stankeviciute, J. 2001. Correlation between species number and homogeneity in plant communities of the Lithuanian seacoast. Biologija 2: 105–107.Google Scholar
  39. Stankeviciute, J. 2006. The succession of sand vegetation at the Lithuanian seacoast. Bot. Lit. 12 (3): 139–156.Google Scholar
  40. van der Maarel, E. 1978. Experimental succession research in a coastal dune grassland, a preliminary report. Vegetatio 38: 21–28.CrossRefGoogle Scholar
  41. Weber, H, J. Moravec and J. P. Theurillat. 2000. International Code of Phytosociological Nomenclature. J. Veg. Sci. 11: 739–768.CrossRefGoogle Scholar
  42. Wood, S.N. 2006. Generalized Additive Models. An Introduction with R. Chapmann & Hall/CRC, Boca Raton, London, New York.CrossRefGoogle Scholar
  43. Zuur, A.F., E.N. Ieno, N. Walker, P. Saveliev and G.M. 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2019

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Ecology CentreUniversity of KielKielGermany

Personalised recommendations